scholarly journals Properties and Engineering Applications of a New Goaf Grouting Filling Material

Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Xiao Feng ◽  
Chong Xia ◽  
Sifeng Zhang ◽  
Chuangui Li ◽  
Hongkui Zhao ◽  
...  

In the treatment of goafs in traffic engineering, technical problems such as those related to large-volume grouting and the precise control of material properties are often encountered. To address these issues, we developed a new composite material comprising cement-fly ash-modified sodium silicate (C-FA-MS). The setting time, fluidity, unconfined compressive strength, and microstructure were varied for different proportions of cement-sodium silicate (C-S) slurry, cement-fly ash-sodium silicate (C-FA-S) slurry, and C-FA-MS slurry, and their performances were compared and analysed. The experimental results showed that the initial setting time of the slurry was the shortest when both the original sodium silicate volume ratio ( V S ) and modified sodium silicate volume ratio ( V MS ) were 0.2. The final setting time of the C-S and C-FA-S slurries tended to decrease but then increased with decrease in V S , while that of the C-FA-MS slurry increased with lower V MS . The fluidity of the C-FA-S and C-FA-MS slurries decreased with decrease in V S or V MS at different fly ash admixture ratios. The consolidation compressive strength of C-S increased with decreasing V S , while that of C-FA-S showed a considerable increase only when V S decreased from 0.4 to 0.2. Meanwhile, the compressive strength of the C-FA-MS concretions first increased and then decreased with decrease in V MS . Microstructural analysis revealed that there were more cracks in the C-S agglomerate, the fly ash in the C-FA-S agglomerate reduced the relative density of the skeletal structure, and the stronger cross-linking in the C-FA-MS agglomerate improved the strength of the agglomerate. Under the condition of unit grouting volume, the cost of the C-FA-MS slurry was approximately 44.7% and 31.3% lower than that of the C-S and C-FA-S slurries, respectively. The new C-FA-MS material was applied for the treatment of the goaf in the Wu Sizhuang coal mine. Core drilling detection and audiofrequency magnetotelluric survey revealed that the goaf was sufficiently filled.

Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3410 ◽  
Author(s):  
Shin Hau Bong ◽  
Behzad Nematollahi ◽  
Ali Nazari ◽  
Ming Xia ◽  
Jay Sanjayan

Currently, there are a very limited number of studies on the effect of admixtures on properties of ‘one-part’ geopolymers. This paper reports the effects of different superplasticizers and retarders on fresh and hardened properties of one-part fly ash-slag blended geopolymers made by different solid activators. Two different grades of sodium silicate, namely anhydrous sodium metasilicate powder (nSiO2/nNa2O = 0.9) and GD Grade sodium silicate powder (nSiO2/nNa2O = 2.0) were used as the solid activators. Five different commercially available superplasticizers, including three modified polycarboxylate-based superplasticizers (denoted as PC1, PC2, and PC3) and two naphthalene-based superplasticizers (denoted as N1 and N2), as well as three different retarders, including sucrose, anhydrous borax and a commercially available retarder, were investigated. Workability, setting time and compressive strength of the mixtures without and with addition of each ‘individual’ admixture were measured. The results showed the effect of admixtures on the properties of the one-part geopolymers significantly depended on the type of solid activator and the type of admixture used. When GD Grade sodium silicate powder was used as the solid activator, all investigated admixtures not only had no positive effect on the workability and setting time, but also significantly reduced the compressive strength of the mixture. However, when anhydrous sodium metasilicate powder was used as the solid activator, the PC1 and sucrose were the best performing superplasticizer and retarder, respectively, causing no reduction in the compressive strength, but significant increase in the workability (up to + 72%) and setting time (up to + 111%), respectively as compared to the mixture with no admixture. In addition, the results also showed that addition of ‘combined’ admixtures (i.e., PC1 in the presence of sucrose) significantly increased the workability (up to + 39%) and setting time (up to + 141%), but slightly reduced the compressive strength (−16%) of the mixture activated by anhydrous sodium metasilicate powder, as compared to the mixture with no admixture.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Duo Zhang ◽  
Weifeng Wang ◽  
Jun Deng ◽  
Hu Wen ◽  
Xiaowei Zhai

If an airtight wall in a coal mine leaks air, it may cause spontaneous combustion of residual coal in the gob and even cause a full-blown fire or gas explosion. In this study, we developed a new type of foamed concrete, low-alkalinity sulphoaluminate cement (LASC), to control air leakage. The performance of filling materials that were prepared by adding various dosages of foam to LASC was studied. The longer the curing period for the foam filling material of LASC, the better the crystallinity of the hydrated product. With an increasing foam dosage, the initial setting time gradually extends while the fluidity of the foam slurry decreases. The bubble rate of the filling material increases and the density decreases with increasing foam dosage. The compressive strength of the LASC filling material decreases with increasing foam dosage and increases with increasing curing time. In the LASC filling materials, the optimal volume ratio of foam dosage to gel slurry is 2. The crystallinity, initial gel time, and compressive strength of the LASC foaming materials are better than those of ordinary Portland cement (OPC) foaming materials. When the crossheading is filled with LASC foam cement, the deformation of the surrounding rock is less than 19 cm, and the air leakage prevention is better than that achieved with loess and fly-ash-cement foam. Thus, the proposed LASC foam material can be applied to the filling of the crossheading to efficiently prevent leakage in underground coal mines.


2011 ◽  
Vol 250-253 ◽  
pp. 1147-1152 ◽  
Author(s):  
Xiao Jun Jiang ◽  
Yan Yun ◽  
Zhi Hua Hu

The feasibility of manufacturing non-autoclaved aerated concrete using alkali activated phosphorus slag as a cementitious material was investigated in this paper. Liquid sodium silicate with various modules (the molar ratio between SiO2 and Na2O) was used as alkali activator and a part of phosphorus slag was replaced with fly ash which was used to control the setting time of aerated concrete. The influences of the fly ash, curing procedure, modulus of sodium silicate solution and concentration of alkalis on the compressive strength and bulk density of non-autoclaved aerated concrete have been studied. Moreover, the types of the hydration products were investigated using XRD and SEM. The results indicate that: the compressive strength of aerated concrete was influenced by concentration of alkalis obviously. The compressive strength of 11.9MPa and the bulk density of 806kg/m3 were obtained with an activator of 1.2 modulus of sodium silicate and 6% concentration of alkalis under the circumstance of 60°C curing for 28 days.


2020 ◽  
Author(s):  
Guorui Feng ◽  
Chenliang Hao ◽  
Pengfei Wang

Abstract Severe deformation and failure frequently occur in roadways with soft or weak surrounding rock and have greatly influenced safe and efficient mining of coal in many coal mines. Using portland cement, emery and fly ash as main raw materials, through laboratory tests, effect of water/binder ratio, cement/sand ratio, water/sodium silicate ratio, water reducing agent, fly ash/cement ratio and various performance indexes of grout of fluidity, viscosity, setting time, bleeding rate, compressive strength, concretion rate and various performance indexes were systematically analyzed. An optimized mixture ratio of the main raw materials added in the grouting material proportion was determined through uniform design method, an optimal mixture ratio was determined by regression analysis. The results show that: 1) The flow performance is significantly affected by change of sodium silicate and water reducer, the compressive strength of grouting material increases significantly with increase in emery content, and decreases significantly with increase in water reducer. 2) An optimized mixture ratio among water cement ratio, cement sand ratio, water/sodium silicate ratio, water reducing agent, fly ash/cement ratio in the grouting material is 0.75, 1.2, 8%, 3% and 0.18, respectively. Field test demonstrated that the material has better performance in reinforcing weak and broken rock mass.


2020 ◽  
Vol 13 (1) ◽  
pp. 117-122
Author(s):  
Addepalli Mallinadh Kashyap ◽  
Tanimki Chandra Sekhar Rao ◽  
N.V. Ramana Rao

Carbon dioxide is liberated in huge amounts by the manufacturing of Portland Pozzolana Cement. Normally, conventional concrete is manufactured with Portland cement, which acts as a binder. The production of cement emits CO2 into the atmosphere, which is a green house gas and causes the environmental pollution. Considering this as a serious environmental problem, there is a need to develop sustainable alternatives to Portland cement utilizing the industrial byproducts such as fly ash, ground granulated blast furnace slag and Metakaoline which are pozzolonic in nature. It has been established that fly ash can replace cement partially. In this context, a new material was developed known as ‖Geopolymer‖. In this study, the various parameters on the short term engineering properties of fresh and hardened properties of Geopolymer Mortar were studied. In the present investigation, cement is replaced by geopolymer source material and water is replaced by alkaline activator consisting of Sodium Silicate and Sodium Hydroxide of molarity (12M). The ratio of sodium silicate to sodium hydroxide adopted was 2.5. The test results showed that final setting time decreases as the GGBS content in the mix increases and also increase in compressive strength. Where as in the case of metakaoline, as the content increases, there is a decrease in compressive strength and setting times of the geopolymer concrete.


Author(s):  
A. Z. Mohd Ali ◽  
◽  
N. A. Jalaluddin ◽  
N. Zulkiflee ◽  
◽  
...  

The production of ordinary Portland cement (OPC) consumes considerable amount of natural resources, energy and at the same time contribute in high emission of CO2 to the atmosphere. A new material replacing cement as binder called geopolymer is alkali-activated concrete which are made from fly ash, sodium silicate and sodium hydroxide (NaOH). The alkaline solution mixed with fly ash producing alternative binder to OPC binder in concrete named geopolymer paste. In the process, NaOH was fully dissolved in water and cooled to room temperature. This study aims to eliminate this process by using NaOH in solid form together with fly ash before sodium silicate liquid and water poured into the mixture. The amount of NaOH solids were based on 10M concentration. The workability test is in accordance to ASTM C230. Fifty cubic mm of the geopolymer paste were prepared which consists of fly ash to alkaline solution ratio of 1: 0.5 and the curing regime of 80℃ for 24 hours with 100% humidity were implemented. From laboratory test, the workability of dry method geopolymer paste were decreased. The compressive strength of the dry mix of NaOH showed 55% and the workability has dropped to 58.4%, it showed strength reduction compared to the wet mix method.


2018 ◽  
Vol 20 (2) ◽  
pp. 51
Author(s):  
Antoni . ◽  
Hendra Surya Wibawa ◽  
Djwantoro Hardjito

This study evaluates the effect of particle size distribution (PSD) of high calcium fly ash on high volume fly ash (HVFA) mortar characteristics. Four PSD variations of high calcium fly ash used were: unclassified fly ash and fly ash passing sieve No. 200, No. 325 and No. 400, respectively. The fly ash replacement ratio of the cementitious material ranged between 50-70%. The results show that with smaller fly ash particles size and higher levels of fly ash replacement, the workability of the mixture was increased with longer setting time. There was an increase in mortar compressive strength with finer fly ash particle size, compared to those with unclassified ones, with the highest strength was found at those with fly ash passing mesh No. 325. The increase was found due to better compactability of the mixture. Higher fly ash replacement reduced the mortar’s compressive strength, however, the rate was reduced when finer fly ash particles was used.


2010 ◽  
Vol 69 ◽  
pp. 69-74 ◽  
Author(s):  
Ömer Arıöz ◽  
Kadir Kilinç ◽  
Mustafa Tuncan ◽  
Ahmet Tuncan ◽  
Taner Kavas

Geopolymer is a new class of three-dimensionally networked amorphous to semi-crystalline alumino-silicate materials, and first developed by Professor Joseph Davidovits in 1978. Geopolymers can be synthesized by mixing alumino–silicate reactive materials such as kaolin, metakaolin or pozzolans in strong alkaline solutions such as NaOH and KOH and then cured at room temperature. Heat treatment applied at higher temperatures may give better results. Depending on the mixture, the optimum temperature and duration vary 40-100 °C and 2-72 hours, respectively. The properties of geopolymeric paste depend on type of source material (fly ash, metakaolin, kaolin), type of activator (sodium silicate-sodium hydroxide, sodium silicate-potassium hydroxide), amount of activator, heat treatment temperature, and heat treatment duration. In this experimental investigation, geopolymeric bricks were produced by using F-type fly ash, sodium silicate, and sodium hydroxide solution. The bricks were treated at various temperatures for different hours. The compressive strength and density of F-type fly ash based geopolymeric bricks were determined at the ages of 7, 28 and 90 days. Test results have revealed that the compressive strength values of F-type fly ash based geobricks ranged between 5 and 60 MPa. It has been found that the effect of heat treatment temperature and heat treatment duration on the density of F-type fly ash based geobricks was not significant. It should be noted that the spherical particle size increased as the heat treatment temperature increased in the microstructure of F-type fly ash based geobricks treated in oven at the temperature of 60 °C for 24 hours.


2011 ◽  
Vol 287-290 ◽  
pp. 1237-1240
Author(s):  
Lan Fang Zhang ◽  
Rui Yan Wang

The aim of this paper is to study the influence of lithium-slag and fly ash on the workability , setting time and compressive strength of alkali-activated slag concrete. The results indicate that lithium-slag and fly-ash can ameliorate the workability, setting time and improve the compressive strength of alkali-activated slag concrete,and when 40% or 60% slag was replaced by lithium-slag or fly-ash, above 10 percent increase in 28-day compressive strength of concrete were obtained.


Sign in / Sign up

Export Citation Format

Share Document