scholarly journals The Ulam Stability of Fractional Differential Equation with the Caputo-Fabrizio Derivative

2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Shuyi Wang

The aim of this paper is to establish the Ulam stability of the Caputo-Fabrizio fractional differential equation with integral boundary condition. We also present the existence and uniqueness results of the solution for the Caputo-Fabrizio fractional differential equation by Krasnoselskii’s fixed point theorem and Banach fixed point theorem. Some examples are provided to illustrate our theorems.

Filomat ◽  
2020 ◽  
Vol 34 (9) ◽  
pp. 3003-3014
Author(s):  
Mohamed Abbas

We consider a Hilfer fractional differential equation with nonlocal Erd?lyi-Kober fractional integral boundary conditions. The existence, uniqueness and Ulam-Hyers stability results are investigated by means of the Krasnoselskii?s fixed point theorem and Banach?s fixed point theorem. An example is given to illustrate the main results.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 765
Author(s):  
Zhifu Jia ◽  
Xinsheng Liu ◽  
Cunlin Li

No previous study has involved uncertain fractional differential equation (FDE, for short) with jump. In this paper, we propose the uncertain FDEs with jump, which is driven by both an uncertain V-jump process and an uncertain canonical process. First of all, for the one-dimensional case, we give two types of uncertain FDEs with jump that are symmetric in terms of form. The next, for the multidimensional case, when the coefficients of the equations satisfy Lipschitz condition and linear growth condition, we establish an existence and uniqueness theorems of uncertain FDEs with jump of Riemann-Liouville type by Banach fixed point theorem. A symmetric proof in terms of form is suitable to the Caputo type. When the coefficients do not satisfy the Lipschitz condition and linear growth condition, we just prove an existence theorem of the Caputo type equation by Schauder fixed point theorem. In the end, we present an application about uncertain interest rate model.


Author(s):  
Natthaphong Thongsalee ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

AbstractIn this paper we study a new class of Riemann-Liouville fractional differential equations subject to nonlocal Erdélyi-Kober fractional integral boundary conditions. Existence and uniqueness results are obtained by using a variety of fixed point theorems, such as Banach fixed point theorem, Nonlinear Contractions, Krasnoselskii fixed point theorem, Leray-Schauder Nonlinear Alternative and Leray-Schauder degree theory. Examples illustrating the obtained results are also presented.


2021 ◽  
Vol 25 (1) ◽  
pp. 1-30
Author(s):  
Choukri Derbazi ◽  
Zidane Baitiche ◽  
Mouffak Benchohra ◽  
Gaston N'guérékata

The main purpose of this paper is to study the existence, uniqueness, Ea-Ulam stability results, and other properties of solutions for certain classes of nonlinear fractional differential equations involving the ps-Caputo derivative with initial conditions. Modern tools of functional analysis are applied to obtain the main results. More precisely using Weissinger's fixed point theorem and Schaefer's fixed point theorem the existence and uniqueness results of solutions are proven in the bounded domain. While the well known Banach fixed point theorem coupled with Bielecki type norm are used with the end goal to establish sufficient conditions for existence and uniqueness results on unbounded domains. Meanwhile, the monotone iterative technique combined with the method of upper and lower solutions is used to prove the existence and uniqueness of extremal solutions. Furthermore, by means of new generalizations of Gronwall's inequality, different kinds of Ea-Ulam stability of the proposed problem are studied. Finally, as applications of the theoretical results, some examples are given to illustrate the feasibility and correctness of the main results.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Kemei Zhang

In this paper, we consider the following higher-order semipositone nonlocal Riemann-Liouville fractional differential equation D0+αx(t)+f(t,x(t),D0+βx(t))+e(t)=0,  0<t<1,D0+βx(0)=D0+β+1x(0)=⋯=D0+n+β-2x(0)=0, and D0+βx(1)=∑i=1m-2ηiD0+βx(ξi), where D0+α and D0+β are the standard Riemann-Liouville fractional derivatives. The existence results of positive solution are given by Guo-krasnosel’skii fixed point theorem and Schauder’s fixed point theorem.


2020 ◽  
Vol 23 (4) ◽  
pp. 1188-1207
Author(s):  
J. Vanterler da C. Sousa ◽  
Mouffak Benchohra ◽  
Gaston M. N’Guérékata

AbstractThis paper investigates the overall solution attractivity of the fractional differential equation involving the ψ-Hilfer fractional derivative and using the Krasnoselskii’s fixed point theorem. We highlight some particular cases of the results presented here, especially involving the Riemann-Liouville, thus illustrating the broad class of fractional derivatives to which these results can be applied.


2021 ◽  
Vol 5 (4) ◽  
pp. 211
Author(s):  
Liliana Guran ◽  
Zoran D. Mitrović ◽  
G. Sudhaamsh Mohan Reddy ◽  
Abdelkader Belhenniche ◽  
Stojan Radenović

In this article, we apply one fixed point theorem in the setting of b-metric-like spaces to prove the existence of solutions for one type of Caputo fractional differential equation as well as the existence of solutions for one integral equation created in mechanical engineering.


Sign in / Sign up

Export Citation Format

Share Document