scholarly journals River Segmentation of Remote Sensing Images Based on Composite Attention Network

Complexity ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Zhiyong Fan ◽  
Jianmin Hou ◽  
Qiang Zang ◽  
Yunjie Chen ◽  
Fei Yan

River segmentation of remote sensing images is of important research significance and application value for environmental monitoring, disaster warning, and agricultural planning in an area. In this study, we propose a river segmentation model in remote sensing images based on composite attention network to solve the problems of abundant river details in images and the interference of non-river information including bridges, shadows, and roads. To improve the segmentation efficiency, a composite attention mechanism is firstly introduced in the central region of the network to obtain the global feature dependence of river information. Next, in this study, we dynamically combine binary cross-entropy loss that is designed for pixel-wise segmentation and the Dice coefficient loss that measures the similarity of two segmentation objects into a weighted one to optimize the training process of the proposed segmentation network. The experimental results show that compared with other semantic segmentation networks, the evaluation indexes of the proposed method are higher than those of others, and the river segmentation effect of CoANet model is significantly improved. This method can segment rivers in remote sensing images more accurately and coherently, which can meet the needs of subsequent research.

Author(s):  
Z. C. Men ◽  
J. Jiang ◽  
X. Guo ◽  
L. J. Chen ◽  
D. S. Liu

Abstract. Due to the diverse structure and complex background of airports, fast and accurate airport detection in remote sensing images is challenging. Currently, airport detection method is mostly based on boxes, but pixel-based detection method which identifies airport runway outline has been merely reported. In this paper, a framework using deep convolutional neural network is proposed to accurately identify runway contour from high resolution remote sensing images. Firstly, we make a large and medium airport runway semantic segmentation data set (excluding the south Korean region) including 1,464 airport runways. Then DeepLabv3 semantic segmentation network with cross-entropy loss is trained using airport runway dataset. After the training using cross-entropy loss, lovasz-softmax loss function is used to train network and improve the intersection-over-union (IoU) score by 5.9%. The IoU score 0.75 is selected as the threshold of whether the runway is detected and we get accuracy and recall are 96.64% and 94.32% respectively. Compared with the state-of-the-art method, our method improves 1.3% and 1.6% of accuracy and recall respectively. We extract the number of airport runway as well as their basic contours of all the Korean large and medium airports from the remote sensing images across South Korea. The results show that our method can effectively detect the runway contour from the remote sensing images of a large range of complex scenes, and can provide a reference for the detection of the airport.


Author(s):  
Yuansheng Hua ◽  
Diego Marcos ◽  
Lichao Mou ◽  
Xiao Xiang Zhu ◽  
Devis Tuia

2021 ◽  
Vol 26 (1) ◽  
pp. 200-215
Author(s):  
Muhammad Alam ◽  
Jian-Feng Wang ◽  
Cong Guangpei ◽  
LV Yunrong ◽  
Yuanfang Chen

AbstractIn recent years, the success of deep learning in natural scene image processing boosted its application in the analysis of remote sensing images. In this paper, we applied Convolutional Neural Networks (CNN) on the semantic segmentation of remote sensing images. We improve the Encoder- Decoder CNN structure SegNet with index pooling and U-net to make them suitable for multi-targets semantic segmentation of remote sensing images. The results show that these two models have their own advantages and disadvantages on the segmentation of different objects. In addition, we propose an integrated algorithm that integrates these two models. Experimental results show that the presented integrated algorithm can exploite the advantages of both the models for multi-target segmentation and achieve a better segmentation compared to these two models.


2020 ◽  
Vol 13 (1) ◽  
pp. 71
Author(s):  
Zhiyong Xu ◽  
Weicun Zhang ◽  
Tianxiang Zhang ◽  
Jiangyun Li

Semantic segmentation is a significant method in remote sensing image (RSIs) processing and has been widely used in various applications. Conventional convolutional neural network (CNN)-based semantic segmentation methods are likely to lose the spatial information in the feature extraction stage and usually pay little attention to global context information. Moreover, the imbalance of category scale and uncertain boundary information meanwhile exists in RSIs, which also brings a challenging problem to the semantic segmentation task. To overcome these problems, a high-resolution context extraction network (HRCNet) based on a high-resolution network (HRNet) is proposed in this paper. In this approach, the HRNet structure is adopted to keep the spatial information. Moreover, the light-weight dual attention (LDA) module is designed to obtain global context information in the feature extraction stage and the feature enhancement feature pyramid (FEFP) structure is promoted and employed to fuse the contextual information of different scales. In addition, to achieve the boundary information, we design the boundary aware (BA) module combined with the boundary aware loss (BAloss) function. The experimental results evaluated on Potsdam and Vaihingen datasets show that the proposed approach can significantly improve the boundary and segmentation performance up to 92.0% and 92.3% on overall accuracy scores, respectively. As a consequence, it is envisaged that the proposed HRCNet model will be an advantage in remote sensing images segmentation.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 28349-28360
Author(s):  
Jiali Cai ◽  
Chunjuan Liu ◽  
Haowen Yan ◽  
Xiaosuo Wu ◽  
Wanzhen Lu ◽  
...  

2021 ◽  
Vol 13 (13) ◽  
pp. 2524
Author(s):  
Ziyi Chen ◽  
Dilong Li ◽  
Wentao Fan ◽  
Haiyan Guan ◽  
Cheng Wang ◽  
...  

Deep learning models have brought great breakthroughs in building extraction from high-resolution optical remote-sensing images. Among recent research, the self-attention module has called up a storm in many fields, including building extraction. However, most current deep learning models loading with the self-attention module still lose sight of the reconstruction bias’s effectiveness. Through tipping the balance between the abilities of encoding and decoding, i.e., making the decoding network be much more complex than the encoding network, the semantic segmentation ability will be reinforced. To remedy the research weakness in combing self-attention and reconstruction-bias modules for building extraction, this paper presents a U-Net architecture that combines self-attention and reconstruction-bias modules. In the encoding part, a self-attention module is added to learn the attention weights of the inputs. Through the self-attention module, the network will pay more attention to positions where there may be salient regions. In the decoding part, multiple large convolutional up-sampling operations are used for increasing the reconstruction ability. We test our model on two open available datasets: the WHU and Massachusetts Building datasets. We achieve IoU scores of 89.39% and 73.49% for the WHU and Massachusetts Building datasets, respectively. Compared with several recently famous semantic segmentation methods and representative building extraction methods, our method’s results are satisfactory.


Sign in / Sign up

Export Citation Format

Share Document