scholarly journals Blockchain-Based Digital Twins Collaboration for Smart Pandemic Alerting: Decentralized COVID-19 Pandemic Alerting Use Case

2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Radhya Sahal ◽  
Saeed H. Alsamhi ◽  
Kenneth N. Brown ◽  
Donna O’Shea ◽  
Bader Alouffi

Emerging technologies such as digital twins, blockchain, Internet of Things (IoT), and Artificial Intelligence (AI) play a vital role in driving the industrial revolution in all domains, including the healthcare sector. As a result of COVID-19 pandemic outbreak, there is a significant need for medical cyber-physical systems to adopt these emerging technologies to combat COVID-19 paramedic crisis. Also, acquiring secure real-time data exchange and analysis across multiple participants is essential to support the efforts against COVID-19. Therefore, we have introduced a blockchain-based collaborative digital twins framework for decentralized epidemic alerting to combat COVID-19 and any future pandemics. The framework has been proposed to bring together the existing advanced technologies (i.e., blockchain, digital twins, and AI) and then provide a solution to decentralize epidemic alerting to combat COVID-19 outbreaks. Also, we have described how the conceptual framework can be applied in the decentralized COVID-19 pandemic alerting use case.

Author(s):  
Shashwat Pathak ◽  
Shreyans Pathak

The recent decade has seen considerable changes in the way the technology interacts with human lives and almost all the aspects of life be it personal or professional has been touched by technology. Many smart devices have also started playing a vital role in many fields and domains and the internet of things (IoT) has been the harbinger of the advent of IoT devices. IoT devices have proven to be monumental in imparting ‘smartness' in the otherwise static machines. The ability of the devices to interact and transfer the data to the internet and ultimately to the end-user has revolutionized the technological world and has brought many seemingly disparate fields in the technological purview. Out of the many fields where IoT has started gaining momentum, one of the most important ones is the healthcare sector. Many wearable smart devices have been developed over time capable to transmit real-time data to hospitals and doctors. It is essential for tracking the progress of the critically ill patients and has opened the horizon for attending patients remotely using these smart devices.


2022 ◽  
Vol 12 (2) ◽  
pp. 870
Author(s):  
George Tsinarakis ◽  
Nikolaos Sarantinoudis ◽  
George Arampatzis

A generic well-defined methodology for the construction and operation of dynamic process models of discrete industrial systems following a number of well-defined steps is introduced. The sequence of steps for the application of the method as well as the necessary inputs, conditions, constraints and the results obtained are defined. The proposed methodology covers the classical offline modelling and simulation applications as well as their online counterpart, which use the physical system in the context of digital twins, with extensive data exchange and interaction with sensors, actuators and tools from other scientific fields as analytics and optimisation. The implemented process models can be used for what-if analysis, comparative evaluation of alternative scenarios and for the calculation of key performance indicators describing the behaviour of the physical systems under given conditions as well as for online monitoring, management and adjustment of the physical industrial system operations with respect to given rules and targets. An application of the proposed methodology in a discrete industrial system is presented, and interesting conclusions arise and are discussed. Finally, the open issues, limitations and future extensions of the research are considered.


2021 ◽  
Vol 16 (91) ◽  
pp. 22-31
Author(s):  
Maksim I. Dli ◽  
◽  
Ekaterina A. Vlasova ◽  
Andrey M. Sokolov ◽  
Elvira V. Morgunova ◽  
...  

Currently, when modeling complex technological processes in cyber-physical systems, procedures for creating so-called "digital twins" (DT) have become widespread. DT are virtual copies of real objects which reflect their main properties at various stages of the life cycle. The use of digital twins allows real-time monitoring of the current state of the simulated system, and also provides additional opportunities for engineering and deeper customization of its components to improve the quality of products. The development of the "digital twin" technology is facilitated by the ongoing Fourth Industrial Revolution, which is characterized by the massive introduction of cyber-physical systems into production process. These systems are based on the use of the latest technologies for data processing and presentation and have a complex structure of information chain between its components. When creating digital twins of such systems elements, it is advisable to use programming languages, that allow visualization of simulated processes and provide a convenient and developed apparatus for working with complex mathematical dependencies. The Python programming language has similar characteristics. In the article, as an example of a cyber- physical system, a chemical-technological system based on a horizontal-grate machine is considered. This system is designed to implement the process of producing pellets from the apatite-nepheline ore mining wastes. The article describes various aspects of creating a digital twin of its elements that carry out the chemical-technological drying process in relation to a single pellet. The digital twin is implemented using the Python 3.7.5 programming language and provides the visualization of the process in the form of a three-dimensional interactive model. Visualization is done using the VPython library. The description of the digital twin software operation algorithm is given, as well as the type of the information system interface, the input and output information type, the results of modeling the investigated chemical-technological process. It is shown that the developed digital twin can be used in three versions: independently (Digital Twin Prototype), as an instance of a digital twin (Digital Twin Instance), and also as part of a digital twins set (Digital Twin Aggregate).


2021 ◽  
Vol 26 ◽  
pp. 505-525
Author(s):  
Abiola A. Akanmu ◽  
Chimay J. Anumba ◽  
Omobolanle O. Ogunseiju

The construction industry continues to seek innovative ways to safely, timely and cost-effectively deliver construction projects. Several efforts have been made to automate construction processes but marginial success has been achieved in effectively reducing the long standing risks suffered by the industry. While industry 4.0 promises to improve project efficiency, reduce waste and improve productivity, the transition to this will depend on the successful adoption of many emerging technologies such as virtual design modeling technologies, sensing technologies, data analysis, storage and communication technologies, human-computer interaction technologies, and robotics. To accelerate innovation, digital twins and cyber-physical systems will be a necessity to advance automation and real-time control with these technologies. While digital twin represents a digital replica of the asplanned and as-built facility, cyber physical systems involve integration of physical systems with their digital replica through sensors and actuators. Despite evidence of the efficacy of cyber-physical systems and digital twins for reducing non-fatal injuries, enhancing safety management, improving progress monitoring and enhancing performance monitoring and control of facilities, their adoption in the construction industry is still in its infancy. This paper sheds light on the opportunities offered by cyber-physical systems and digital twins in other industry sectors and advocates for their increased deployment in the construction industry. This paper describes cyber-physical integration of emerging technologies with the physical construction or constructed facility as the next generation digital twin and cyber-physical systems. Potential scenarios of next generation cyber physical system and digital twin for improving workforce productivity, health, and safety, lifecycle management of building systems, and workforce competency are presented.


Author(s):  
Issa Alghatrifi ◽  
Ali S. Al Musawi

Higher education institutions and their engineering departments have a vital role in fulfilling the new requirements and opportunities of the information and communication technologies (ICT). Therefore, understanding the guidelines to adapt to the new ICT innovations in relation with the Fourth Industrial Revolution such as the internet of things, cloud computing, virtual reality, and artificial intelligence is vital to determine the emerging patterns in their development, delivery, implementation, and assessment. This study aims to define the new educational requirements in engineering education based on the developments of the Fourth Industrial Revolution. Conducting an in-depth analysis of the current literature revealed that although these emerging technologies have been widely used, there are some challenges being faced for their effective use in engineering education. Therefore, the authors provide some guidelines and discuss possible research directions for the use of these technologies in near future.


Author(s):  
Amon Göppert ◽  
Lea Grahn ◽  
Jonas Rachner ◽  
Dennis Grunert ◽  
Simon Hort ◽  
...  

AbstractThe demand for individualized products drives modern manufacturing systems towards greater adaptability and flexibility. This increases the focus on data-driven digital twins enabling swift adaptations. Within the framework of cyber-physical systems, the digital twin is a digital model that is fully connected to the physical and digital assets. A digital model must follow a standardization for interoperable data exchange. Established ontologies and meta-models offer a basis in the definition of a schema, which is the first phase of creating a digital twin. The next phase is the standardized and structured modeling with static use-case specific data. The final phase is the deployment of digital twins into operation with a full connection of the digital model with the remaining cyber-physical system. In this deployment phase communication standards and protocols provide a standardized data exchange. A survey on the state-of-the-art of these three digital twin phases reveals the lack of a consistent workflow from ontology-driven definition to standardized modeling. Therefore, one goal of this paper is the design of an end-to-end digital twin pipeline to lower the threshold of creating and deploying digital twins. As the task of establishing a communication connection is highly repetitive, an automation concept by providing structured protocol data is the second goal. The planning and control of a line-less assembly system with manual stations and a mobile robot as resources and an industrial dog as the product serve as exemplary digital twin applications. Along this use-case the digital twin pipeline is transparently explained.


Smart Cities ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 253-270
Author(s):  
Mohammed Bin Hariz ◽  
Dhaou Said ◽  
Hussein T. Mouftah

This paper focuses on transportation models in smart cities. We propose a new dynamic mobility traffic (DMT) scheme which combines public buses and car ride-sharing. The main objective is to improve transportation by maximizing the riders’ satisfaction based on real-time data exchange between the regional manager, the public buses, the car ride-sharing and the riders. OpenStreetMap and OMNET++ were used to implement a realistic scenario for the proposed model in a city like Ottawa. The DMT scheme was compared to a multi-loading system used for a school bus. Simulations showed that rider satisfaction was enhanced when a suitable combination of transportation modes was used. Additionally, compared to the other scheme, this DMT scheme can reduce the stress level of car ride-sharing and public buses during the day to the minimal level.


J ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 147-153
Author(s):  
Paula Morella ◽  
María Pilar Lambán ◽  
Jesús Antonio Royo ◽  
Juan Carlos Sánchez

Among the new trends in technology that have emerged through the Industry 4.0, Cyber Physical Systems (CPS) and Internet of Things (IoT) are crucial for the real-time data acquisition. This data acquisition, together with its transformation in valuable information, are indispensable for the development of real-time indicators. Moreover, real-time indicators provide companies with a competitive advantage over the competition since they enhance the calculus and speed up the decision-making and failure detection. Our research highlights the advantages of real-time data acquisition for supply chains, developing indicators that would be impossible to achieve with traditional systems, improving the accuracy of the existing ones and enhancing the real-time decision-making. Moreover, it brings out the importance of integrating technologies 4.0 in industry, in this case, CPS and IoT, and establishes the main points for a future research agenda of this topic.


2021 ◽  
Vol 11 (4) ◽  
pp. 1612
Author(s):  
Tong Min Kim ◽  
Seo-Joon Lee ◽  
Dong-Jin Chang ◽  
Jawook Koo ◽  
Taenam Kim ◽  
...  

Although blockchain is acknowledged as one of the most important technologies to lead the fourth industrial revolution, major technical challenges regarding security breach and privacy issues remain. This issue is particularly sensitive in applied medical fields where personal health information is handled within the network. In addition, contemporary blockchain-converged solutions do not consider restricted medical data regulations that are still obstacles in many countries worldwide. This implies a crucial need for a system or solution that is suitable for the healthcare sector. Therefore, this article proposes the development of a dynamic consent medical blockchain system called DynamiChain, based on a ruleset management algorithm for handling health examination data. Moreover, medical blockchain-related studies were systematically reviewed to prove the novelty of DynamiChain. The proposed system was implemented in a scenario where the exercise management healthcare company provided health management services based on data obtained from the data provider’s hospital. The proposed research is envisioned to provide a widely compatible blockchain medical system that could be applied in future healthcare fields.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1043
Author(s):  
Abdallah A. Smadi ◽  
Babatunde Tobi Ajao ◽  
Brian K. Johnson ◽  
Hangtian Lei ◽  
Yacine Chakhchoukh ◽  
...  

The integration of improved control techniques with advanced information technologies enables the rapid development of smart grids. The necessity of having an efficient, reliable, and flexible communication infrastructure is achieved by enabling real-time data exchange between numerous intelligent and traditional electrical grid elements. The performance and efficiency of the power grid are enhanced with the incorporation of communication networks, intelligent automation, advanced sensors, and information technologies. Although smart grid technologies bring about valuable economic, social, and environmental benefits, testing the combination of heterogeneous and co-existing Cyber-Physical-Smart Grids (CP-SGs) with conventional technologies presents many challenges. The examination for both hardware and software components of the Smart Grid (SG) system is essential prior to the deployment in real-time systems. This can take place by developing a prototype to mimic the real operational circumstances with adequate configurations and precision. Therefore, it is essential to summarize state-of-the-art technologies of industrial control system testbeds and evaluate new technologies and vulnerabilities with the motivation of stimulating discoveries and designs. In this paper, a comprehensive review of the advancement of CP-SGs with their corresponding testbeds including diverse testing paradigms has been performed. In particular, we broadly discuss CP-SG testbed architectures along with the associated functions and main vulnerabilities. The testbed requirements, constraints, and applications are also discussed. Finally, the trends and future research directions are highlighted and specified.


Sign in / Sign up

Export Citation Format

Share Document