scholarly journals Variability of Essential and Nonessential Fatty Acids of Irish Rapeseed Oils as an Indicator of Nutritional Quality

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Rebecca Coughlan ◽  
Siobhan Moane ◽  
Tracey Larkin

The low saturated fatty acid content of rapeseed oil has resulted in it being classed as one of the most health-benefiting culinary oils. This study determines whether Irish rapeseed oils contain identical fatty acid profiles or whether distinct profiles exist between producers and producers’ successive oil batches. The fatty acid content of Irish rapeseed oils was determined in terms of the desirable MUFA and PUFA and saturated content of these oils. The fatty acid composition demonstrated significant differences in individual unsaturated fatty acid content, while total saturation had insignificant differences. Saturated fatty acid content ranged from 6.10 to 15.8%, while unsaturated fatty acids ranged from 84.20 to 90.10%. Moreover, individual fatty acid content exhibited significant differences ( p < 0.05 ). Oleic acid (C18:1), linoleic acid (C18:2), and stearic acid (C18:0) contents were considered significantly different from other fatty acids detected. The third successive batch from each producer exhibited lower oleic acid content, and the third batch contained higher linoleic acid content, at the same time maintaining a desirable unsaturated fatty acid composition. Studies suggest that differences in the fatty acid composition may be due to cultivation practices such as climate, soil composition, sowing and harvesting, processing techniques, and oxidation reactions.

2001 ◽  
Vol 73 (2) ◽  
pp. 253-260 ◽  
Author(s):  
K. Raes ◽  
S. de Smet ◽  
D. Demeyer

AbstractThe effect of double-muscling (DM) genotype (double-muscling, mh/mh; heterozygous, mh/+; normal, +/+) of Belgian Blue (BB) young bulls on the intramuscular fatty acid composition, in particular conjugated linoleic acid (CLA) and polyunsaturated fatty acids (PUFA) was examined in five different muscles. The relative fatty acid composition showed only minor differences between muscles within genotypes. However, the DM genotype had a large effect on both the intramuscular total fatty acid content and on the relative fatty acid composition. Across muscles, the mh/mh animals had a lower total fatty acid content compared with the +/+animals (907 v: 2656 mg/100 g muscle;P< 0·01) and a higher PUFA proportion in total fatty acids (27·5 v 11·3 g/100 g total fatty acids;P< 0001), resulting in a higher PUFA/saturated fatty acid ratio (0·55 v 0·18;P< 0·01) and a lower n-6/n-3 ratio (5·34 v. 6·17;P< 0·01). The heterozygous genotype was intermediate between the two homozygous genotypes. The relative CLA content was similar in the mh/mh and +/+ genotypes and approximated 0·4 to 0·5 g/100 g total fatty acids. From the data it is further suggested that differences in the metabolism of the n-3 and n-6 fatty acids could exist between DM genotypes.


1974 ◽  
Vol 25 (4) ◽  
pp. 657 ◽  
Author(s):  
TH Stobbs ◽  
DJ Brett

Jersey cows were used in a change-over design to examine the effect of three levels of energy intake (lucerne hay at 100, 75 and 50% ad lib.) on milk yield, milk composition, fatty acid composition of milk fat, and blood metabolites (non-esterified fatty acids, glucose and total ketones) to determine which measurement was the most accurate indicator of intake of energy. Milk yields averaged 9.9, 8.7 and 7.2 kg/cow/day with relative intakes of 100, 75 and 50% of ad lib. When energy was restricted the proportion of C4–C16 fatty acids in milk fat decreased (72, 69 and 59%), while the proportion of oleic acid increased (15, 18 and 26%). These changes occurred within approximately 6 days on new energy levels. Fore milk and strippings had similar fatty acid proportions. Restriction of energy reduced the solids not fat, protein and casein contents of milk, and increased its butter fat percentage. Non-esterifred fatty acid levels in blood plasma increased with restriction of feed (348, 528 and 579 µ-equiv./l). Glucose and ketone bodies of blood averaged 58 mg/100 ml and 9.1 mg/100 mi respectively, and did not vary between treatments. It is concluded that milk production is the most sensitive indicator of the intake of digestible energy where change-over designs are used. However, when individual animal variation is not removed in the analysis, the intake of energy is most closely correlated with the fatty acid composition of milk fat (r = 0.73 and –0.74 for C4–C16 acids and oleic acid respectively). Significant correlations with the protein to fat and casein to fat ratios of milk were also measured (r = 0.64 and 0.63 respectively). There was a poor relationship between energy intake and blood composition (r = –0.25 for non-esterified fatty acid content).


2020 ◽  
Vol 11 (213) ◽  
pp. 73-77
Author(s):  
Olga Timofeeva ◽  
◽  
Lyudmila Belysheva ◽  
Irina Avsyankina ◽  
Olga Likhoshva

Based on the analysis of the fatty acid composition of fish gastronomy, presented in the Minsk trade network, data on the content of saturated, monounsaturated and ω-3 and ω-6 polyunsaturated fatty acids and their ratio were obtained.


2019 ◽  
Vol 70 (1) ◽  
pp. 288 ◽  
Author(s):  
H. Karaosmanoğlu ◽  
N. Ş. Üstün

In this study, the changes in fatty acid composition, peroxide number, free fatty acids, oleic acid/ linoleic acid (O/L) and iodine value (IV) were investigated during the traditional storage of hazelnuts. The samples were selected from Giresun Quality Tombul, Kara and Sivri hazelnut varieties with economical prescription. Samples were stored according to the conventional methods in external interference-free warehouses until the next harvest time. At the end of storage, the amount of oleic acid in all varieties increased while the amount of linoleic acid decreased. Even though an increase in the free fatty acids and peroxide number in all types of hazelnuts during storage was determined, the values were considerably lower than the rancidity limits at the end of the storage period. As a result of the study it was observed that the hazelnut shell is an important preservative during storage and that hazelnuts can be preserved until the next harvest period under simple storage conditions.


2014 ◽  
Vol 139 (4) ◽  
pp. 433-441 ◽  
Author(s):  
Geoffrey Meru ◽  
Cecilia McGregor

Seed oil percentage (SOP) and fatty acid composition of watermelon (Citrullus lanatus) seeds are important traits in Africa, the Middle East, and Asia where the seeds provide a significant source of nutrition and income. Oil yield from watermelon seed exceeds 50% (w/w) and is high in unsaturated fatty acids, a profile comparable to that of sunflower (Helianthus annuus) and soybean (Glycine max) oil. As a result of novel non-food uses of plant-derived oils, there is an increasing need for more sources of vegetable oil. To improve the nutritive value of watermelon seed and position watermelon as a potential oil crop, it is critical to understand the genetic factors associated with SOP and fatty acid composition. Although the fatty acid composition of watermelon seed is well documented, the underlying genetic basis has not yet been studied. Therefore, the current study aimed to elucidate the quality of watermelon seed oil and identify genomic regions and candidate genes associated with fatty acid composition. Seed from an F2 population developed from a cross between an egusi type (PI 560023), known for its high SOP, and Strain II (PI 279261) was phenotyped for palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), and linoleic acid (18:2). Significant (P < 0.05) correlations were found between palmitic and oleic acid (0.24), palmitic and linoleic acid (–0.37), stearic and linoleic acid (–0.21), and oleic and linoleic acid (–0.92). A total of eight quantitative trait loci (QTL) were associated with fatty acid composition with a QTL for oleic and linoleic acid colocalizing on chromosome (Chr) 6. Eighty genes involved in fatty biosynthesis including those modulating the ratio of saturated and unsaturated fatty acids were identified from the functionally annotated genes on the watermelon draft genome. Several fatty acid biosynthesis genes were found within and in close proximity to the QTL identified in this study. A gene (Cla013264) homolog to fatty acid elongase (FAE) was found within the 1.5-likelihood-odds (LOD) interval of the QTL for palmitic acid (R2 = 7.6%) on Chr 2, whereas Cla008157, a homolog to omega-3-fatty acid desaturase and Cla008263, a homolog to FAE, were identified within the 1.5-LOD interval of the QTL for palmitic acid (R2 = 24.7%) on Chr 3. In addition, the QTL for palmitic acid on Chr 3 was located ≈0.60 Mbp from Cla002633, a gene homolog to fatty acyl- [acyl carrier protein (ACP)] thioesterase B. A gene (Cla009335) homolog to ACP was found within the flanking markers of the QTL for oleic acid (R2 = 17.9%) and linoleic acid (R2 = 21.5%) on Chr 6, whereas Cla010780, a gene homolog to acyl-ACP desaturase was located within the QTL for stearic acid (R2 = 10.2%) on Chr 7. On Chr 8, another gene (Cla013862) homolog to acyl-ACP desaturase was found within the 1.5-LOD interval of the QTL for oleic acid (R2 = 13.5%). The genes identified in this study are possible candidates for the development of functional markers for application in marker-assisted selection for fatty acid composition in watermelon seed. To the best of our knowledge, this is the first study that aimed to elucidate genetic control of the fatty acid composition of watermelon seed.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1082D-1082 ◽  
Author(s):  
Kyoung-Shim Cho ◽  
Hyun-Ju Kim ◽  
Jae-Ho Lee ◽  
Jung-Hoon Kang ◽  
Young-Sang Lee

Fatty acid is known as a physiologically active compound, and its composition in rice may affect human health in countries where rice is the major diet. The fatty acid composition in brown rice of 120 Korean native cultivars was determined by one-step extraction/methylation method and GC. The average composition of 9 detectable fatty acids in tested rice cultivars were as followings: myristic acid; 0.6%, palmitic acid; 21.2%, stearic acid; 1.8%, oleic acid; 36.5%, linoleic acid; 36.3%, linolenic acid; 1.7%, arachidic acid; 0.5%, behenic acid; 0.4%, and lignoceric acid; 0.9%. Major fatty acids were palmitic, oleic and linoleic acid, which composed around 94%. The rice cultivar with the highest linolenic acid was cv. Jonajo (2.1%), and cvs. Pochoenjangmebye and Sandudo showed the highest composition of palmitic (23.4%) and oleic acid (44.8%), respectively. Cultivar Pochuenjangmebye exhitibed the highest composition of saturated fatty acid (28.1%), while cvs. Sandudo and Modo showed the highest mono-unsaturated (44.8%) and poly-unsaturated (42.4%) fatty acid composition, respectively. The oleic acid showed negative correlation with palmitic and linoleic acid, while positive correlation between behenic and lignoceric acids was observed.


2017 ◽  
Vol 4 (1) ◽  
Author(s):  
RAA RANATHUNGA ◽  
YPJ AMARASINGHE ◽  
GTN GUNASEKARA

Physical properties of commonly grown Sri Lanka groundnuts cultivars and promising accession varied considerably and numbers of kernels, pod beak, reticulation, testa colour, and shell out percentage have differences among groundnuts. However, they showed more similarities for most of the characters. Moisture (5.4-8.4%), crude protein (18.7-28.5%), lipid (43.4-53.0%), ash (4.4-5.8%), carbohydrates (9.3-18.2%) and energy level (565.7-618.2kcal) contents varied considerably. Quality and flavor of edible groundnuts and its products are affected by fatty acid composition of oil. Lipids were mainly composed of mono and polyunsaturated fatty acids (>78% of the total lipids). Fatty acid composition analysis indicated that oleic acid (C18:1) was the main constituent of monounsaturated lipids in all seed samples. With the exception of ANKG1, linoleic acid (C18:2) was the major polyunsaturated fatty acid. The saturated fatty acids (Palmatic, Stearic acid and behenic acid) in different cultivars ranged between 10.2 to 15.6%, 2.5 to 6.3% and 1.1 to 5.3%, respectively. Differences among cultivars for oleic acid exhibited significance which ranged between 38.2 to 47.4%. Similarly, cultivars differed statistically for linoleic acid which showed a range of 23.1 to 38.7%. Oleic to linoleic acid ratio was differed and all the released varieties were below the minimum standard level of 1.6, whereas ICGV 86590 and ICGV 00073 showed higher O/L ratio of 1.94 and 1.75 respectively.


2003 ◽  
Vol 83 (1) ◽  
pp. 45-52
Author(s):  
T. A. Van Lunen ◽  
D. Hurnik ◽  
V. Jebelian

Two hundred gilts and 200 barrows, housed within sex in pens of 25, were randomly allotted to two replications of four dietary treatments to determine the effects of incorporating 30, 20, 10 or 0% extruded soybeans (ESB), displacing a commercial protein supplement, in barley-based grower and finisher diets for pigs. Growth, feed intake and carcass quality of the pigs, and meat quality and fatty acid composition of the pork from a random subset of the pigs on test were determined. No sex × diet interactions were observed. ESB inclusion rate had no effect on growth rate; however, per-pen feed consumption decreased numerically with increasing ESB resulting in an improvement in feed efficiency. The 30% ESB inclusion rate increased carcass fat content (P < 0.05) compared with the control, whereas lean content was unaffected. Meat colour and marbling score were similar across all treatments whereas fat and lean firmness was reduced by the 30% ESB inclusion rate (P < 0.05) compared with all other treatments. Increasing ESB in the diet altered the fatty acid content of the pork by decreasing the amount of short-chain saturated and monounsaturated fatty acids and increasing the amount of long-chain polyunsaturated fatty acids (PUFA). The results of this study indicate that ESB can be used as the sole source of supplemental protein in barley-based diets for pigs with no detrimental effects on performance and minimal negative effects on carcass and meat quality. Alteration of fatty acid content of pork from feeding ESB has both positive and negative implications for consumer acceptance by increasing PUFA content while concomitantly increasing the risk of premature oxidation. Key words: Extruded soybeans, pigs, pork, growth, fatty acids, meat quality


Author(s):  
Devi R. C. Bhanu ◽  
K. K. Sabu

Objective: Wild indigenous fruits are believed to be extremely nutritious, contributing a great deal to the general health of the tribal and rural population. To validate this claim, systematic studies are required to estimate their nutritional composition. The objective of the study was to analyze the fatty acid composition of Syzygium zeylanicum (L.) DC. var. zeylanicum.Methods: The fatty acid composition of S. zeylanicum var. zeylanicum fruits were analysed by GC-MS/MS.Results: The major fatty acids were cis-oleic acid (43.47±0.62 %) and linoleic acid (31.14±0.35%). Total monounsaturated fatty acids in the sample was 44.21%. Omega-6, omega-7 and omega-9 fatty acids were detected. The polyunsaturated fatty acids in thefruits were linoleic acid (31.14±0.35 %) and arachidonic acid (0.15±0.22 %), whereas 24.51 % of the total fatty acids were saturated. The ratio of unsaturated to saturated fatty acids was approximately 3:1. The order of abundance of fatty acids, in some of the healthiest oils, viz. olive, canola, peanut oils is, Oleic acid>Linoleic acid>Palmitic acid>Stearic acid and the same order was observed in the present study.Conclusion: Fruits of S. zeylanicum var. zeylanicum too shows a healthy balance between unsaturated and saturated fats. 


Sign in / Sign up

Export Citation Format

Share Document