scholarly journals Multimodal Imaging of Target Detection Algorithm under Artificial Intelligence in the Diagnosis of Early Breast Cancer

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Meiping Jiang ◽  
Sanlin Lei ◽  
Junhui Zhang ◽  
Liqiong Hou ◽  
Meixiang Zhang ◽  
...  

This study aimed to analyze the diagnostic value of multimodal images based on artificial intelligence target detection algorithms for early breast cancer, so as to provide help for clinical imaging examinations of breast cancer. This article combined residual block with inception block, constructed a new target detection algorithm to detect breast lumps, used deep convolutional neural network and ultrasound imaging in diagnosing benign and malignant breast lumps, took breast density grading with mammography, compared the convolutional neural network (CNN) algorithm with the proposed algorithm, and then applied the proposed algorithm to the diagnosis of 120 female patients with breast lumps. According to the results, accuracy rates of breast lump detection (94.76%), benign and malignant breast lumps diagnosis (98.22%), and breast grading (93.65%) with the algorithm applied in this study were significantly higher than those (75.67%, 87.23%, and 79.54%) with CNN algorithm, and the difference was statistically significant ( P  < 0.05); among 62 patients with malignant breast lumps of the 120 patients with breast lumps, 37 were patients with invasive ductal carcinoma, 8 with lobular carcinoma in situ, 16 with intraductal carcinoma, and 4 with mucinous carcinoma; among the remaining 58 patients with benign breast lumps, 28 were patients with fibrocystic breast disease, 17 with intraductal papilloma, 4 with breast hyperplasia, and 9 with adenopathy; the differences in shape, growth direction, edge, and internal echo of multimodal ultrasound imaging of patients with benign and malignant breast lumps had statistical significance ( P  < 0.05); the malignant constituent ratios of patients with breast density grades I to IV were 0%, 7.10%, 80.40%, and 100%, respectively. In short, the multimodal imaging diagnosis under the algorithm in this article was superior to CNN algorithm in all aspects; according to the judgment on benign and malignant breast lumps and breast density with multimodal imaging features, the higher the breast density, the higher the probability of breast cancer.

Author(s):  
W. Abdul Hameed ◽  
Anuradha D. ◽  
Kaspar S.

Breast tumor is a common problem in gynecology. A reliable test for preoperative discrimination between benign and malignant breast tumor is highly helpful for clinicians in culling the malignant cells through felicitous treatment for patients. This paper is carried out to generate and estimate both logistic regression technique and Artificial Neural Network (ANN) technique to predict the malignancy of breast tumor, utilizing Wisconsin Diagnosis Breast Cancer Database (WDBC). Our aim in this Paper is: (i) to compare the diagnostic performance of both methods in distinguishing between malignant and benign patterns, (ii) to truncate the number of benign cases sent for biopsy utilizing the best model as an auxiliary implement, and (iii) to authenticate the capability of each model to recognize incipient cases as an expert system.


2021 ◽  
Vol 18 (2) ◽  
pp. 499-516
Author(s):  
Yan Sun ◽  
Zheping Yan

The main purpose of target detection is to identify and locate targets from still images or video sequences. It is one of the key tasks in the field of computer vision. With the continuous breakthrough of deep machine learning technology, especially the convolutional neural network model shows strong Ability to extract image feature in the field of digital image processing. Although the model research of target detection based on convolutional neural network is developing rapidly, but there are still some problems in practical applications. For example, a large number of parameters requires high storage and computational costs in detected model. Therefore, this paper optimizes and compresses some algorithms by using early image detection algorithms and image detection algorithms based on convolutional neural networks. After training and learning, there will appear forward propagation mode in the application of CNN network model, providing the model for image feature extraction, integration processing and feature mapping. The use of back propagation makes the CNN network model have the ability to optimize learning and compressed algorithm. Then research discuss the Faster-RCNN algorithm and the YOLO algorithm. Aiming at the problem of the candidate frame is not significant which extracted in the Faster- RCNN algorithm, a target detection model based on the Significant area recommendation network is proposed. The weight of the feature map is calculated by the model, which enhances the saliency of the feature and reduces the background interference. Experiments show that the image detection algorithm based on compressed neural network image has certain feasibility.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Ijaz Ahmad ◽  
Inam Ullah ◽  
Wali Ullah Khan ◽  
Ateeq Ur Rehman ◽  
Mohmmed S. Adrees ◽  
...  

Object detection plays a vital role in the fields of computer vision, machine learning, and artificial intelligence applications (such as FUSE-AI (E-healthcare MRI scan), face detection, people counting, and vehicle detection) to identify good and defective food products. In the field of artificial intelligence, target detection has been at its peak, but when it comes to detecting multiple targets in a single image or video file, there are indeed challenges. This article focuses on the improved K-nearest neighbor (MK-NN) algorithm for electronic medical care to realize intelligent medical services and applications. We introduced modifications to improve the efficiency of MK-NN, and a comparative analysis was performed to determine the best fuse target detection algorithm based on robustness, accuracy, and computational time. The comparative analysis is performed using four algorithms, namely, MK-NN, traditional K-NN, convolutional neural network, and backpropagation. Experimental results show that the improved K-NN algorithm is the best model in terms of robustness, accuracy, and computational time.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e14612-e14612 ◽  
Author(s):  
Nataly Tapia Negrete ◽  
Ruquaiyah Takhtawala ◽  
Madeleine Shaver ◽  
Turkay Kart ◽  
Yang Zhang ◽  
...  

e14612 Background: Over 40,000 women in the US will die from breast cancer. Early detection of cancer is crucial and is a potential avenue to improve survival. The objective of this research study is to develop a convoluted neural network (CNN), a subset of artificial intelligence, in order to enhance computerized detection of breast lesions on MRIs. Methods: This is an institutional review board approved retrospective study with post contrast MRI data from 238 patients. Breast tumor segmentation was automated with a hybrid 3D/2D CNN designed adapted from U-net, a popular neural network architecture in biomedical image analysis. T1 post-contrast MRI volumes were used to train the network. The data set was separated into training (80%) and validation (20%) sets. Re-sampling and normalization using z-scores were applied to each volume before training. Contracting and expanding arms of the model consist of successive convolutions followed by batch normalization and ReLU operations. Ground truth was established through manual segmentation and previously conducted readings of the images used to train our network. Results: A 5-fold cross validation was performed for analysis. The Dice similarity coefficient was used to assess segmentation accuracy. The hybrid 3D/2D U-Net architecture yielded a Dice score of 0.753 and a Pearson correlation of 0.548 for the breast tumor segmentation. Conclusions: These results demonstrated the feasibility for artificial intelligence applications in accurately identifying the presence of lesions on breast MRI images.


2019 ◽  
Vol 1 (1) ◽  
pp. 466-482 ◽  
Author(s):  
Vinícius Silva Araújo ◽  
Augusto Guimarães ◽  
Paulo de Campos Souza ◽  
Thiago Silva Rezende ◽  
Vanessa Souza Araújo

Research on predictions of breast cancer grows in the scientific community, providing data on studies in patient surveys. Predictive models link areas of medicine and artificial intelligence to collect data and improve disease assessments that affect a large part of the population, such as breast cancer. In this work, we used a hybrid artificial intelligence model based on concepts of neural networks and fuzzy systems to assist in the identification of people with breast cancer through fuzzy rules. The hybrid model can manipulate the data collected in medical examinations and identify patterns between healthy people and people with breast cancer with an acceptable level of accuracy. These intelligent techniques allow the creation of expert systems based on logical rules of the IF/THEN type. To demonstrate the feasibility of applying fuzzy neural networks, binary pattern classification tests were performed where the dimensions of the problem are used for a model, and the answers identify whether or not the patient has cancer. In the tests, experiments were replicated with several characteristics collected in the examinations done by medical specialists. The results of the tests, compared to other models commonly used for this purpose in the literature, confirm that the hybrid model has a tremendous predictive capacity in the prediction of people with breast cancer maintaining acceptable levels of accuracy with good ability to act on false positives and false negatives, assisting the scientific milieu with its forecasts with the significant characteristic of interpretability of breast cancer. In addition to coherent predictions, the fuzzy neural network enables the construction of systems in high level programming languages to build support systems for physicians’ actions during the initial stages of treatment of the disease with the fuzzy rules found, allowing the construction of systems that replicate the knowledge of medical specialists, disseminating it to other professionals..


Sign in / Sign up

Export Citation Format

Share Document