scholarly journals Dynamic Simulation Analysis of Track Tension and the Influencing Factors of Deep-Sea Tracked Mining Vehicle

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Fan Beibei ◽  
Liao Naixing

The deep-sea mining miner requires good passability to operate in complex and changeable terrain environment of the seabed. Among them, the track tension is an important factor to ensure the normal running of the vehicle. Aiming at the complex track tension problem on track link, the forces on each component of the tracked system were analyzed, and the theoretical formulas of track tension were established. The theoretical estimation and dynamic simulation of track tension in uniform speed were carried out by using the multibody dynamics model of the tracked vehicle, and the rationality of the theoretical estimation formula was verified. The influencing factors of track tension also were analyzed, and the significance of each factor on track was discussed by dynamic simulation. The results provided a theoretical basis for design of tracked vehicles.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Vo Van Bien ◽  
◽  
Martin Macko ◽  
Nguyen Thai Dung ◽  
Nguyen Duy Phon ◽  
...  

The paper presents a method of determining the dynamic parameters of multiple-rocket-launcher system mounted on the wheeled vehicle based on Newton's law of motion. The dynamic simulation was conducted and then the results were compared with the corre-sponding experimental data to verify the reliability of the model. The model was ap-plied in calculation and tested out on multiple-rocket-launcher system B?-21 (of Rus-sia). The theoretical model calculation results are relatively consistent with the meas-ured experimental data. The dependence of the launcher oscillation on the rate of fire was investigated, which determined the optimal rate of fire for each launcher. These results are used to evaluate the firing stability of the launcher when firing individual shots and firing bursts. This is an important theoretical basis which can be a reference for designers in the design process of improvement, manufacture, exploitation and use of a launcher mounted on the wheeled vehicle.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Joshua T. Cook ◽  
Laura E. Ray ◽  
James H. Lever

This paper presents a generalized, multibody dynamics model for a tracked vehicle equipped with a towing winch and control strategies that enhance vehicle mobility by regulating track slip based on real-time terrain characterization and automating winch use. The vehicle model is validated under conditions where no action is taken by the winch. Thereafter, two mobility enhancing control strategies are outlined. The first strategy regulates track slip to a real-time estimated value that generates maximum net traction. This is done by computing state-force estimates from a Kalman filter that are compared to terrain traction models using a Bayesian hypothesis selection approach. If the vehicle is traction limited and the first strategy fails, a second strategy that automates winch use is activated. Simulation results are shown for both scenarios.


2013 ◽  
Vol 313-314 ◽  
pp. 1120-1124 ◽  
Author(s):  
Hong Wei Ma ◽  
Dong Sheng Li ◽  
Xu Hui Zhang ◽  
Qing Hua Mao

To study the dynamic characteristics of belt conveyor during belt rupture, the finite element dynamic model of belt conveyor was built. Dynamic simulation system of DTII type belt conveyor was established with AMESim. The simulation parameters were determined by DTII type belt conveyor design manual and the dynamic model. The speed, displacement of break point and mechanic characteristic carve in break moment were obtained. According to the result, the optimal capture time was confirmed.It provides the theoretical basis for the design of belt rupture equipment.


Author(s):  
Alfredo Gay Neto ◽  
Peter Wriggers

AbstractWe present a version of the Discrete Element Method considering the particles as rigid polyhedra. The Principle of Virtual Work is employed as basis for a multibody dynamics model. Each particle surface is split into sub-regions, which are tracked for contact with other sub-regions of neighboring particles. Contact interactions are modeled pointwise, considering vertex-face, edge-edge, vertex-edge and vertex-vertex interactions. General polyhedra with triangular faces are considered as particles, permitting multiple pointwise interactions which are automatically detected along the model evolution. We propose a combined interface law composed of a penalty and a barrier approach, to fulfill the contact constraints. Numerical examples demonstrate that the model can handle normal and frictional contact effects in a robust manner. These include simulations of convex and non-convex particles, showing the potential of applicability to materials with complex shaped particles such as sand and railway ballast.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 32171-32187
Author(s):  
Shaoyang Qiu ◽  
Hongxiang Ren ◽  
Haijiang Li ◽  
Yi Zhou ◽  
Delong Wang

2020 ◽  
Vol 10 (16) ◽  
pp. 5467
Author(s):  
Po-Tuan Chen ◽  
Cheng-Jung Yang ◽  
Kuohsiu David Huang

To avoid unnecessary power loss during switching between the various power sources of a composite electric vehicle while achieving smooth operation, this study focuses on the development and dynamic simulation analysis of a control system for the power of a parallel composite vehicle. This system includes a power integration and distribution mechanism, which enables the two power sources of the internal combustion engine and electric motor to operate independently or in coordination to meet the different power-output requirements. The integration of the electric motor and battery-charging engine reduces the system complexity. To verify the working efficiency of the energy control strategy for the power system, the NEDC2000 cycle is used for the vehicle driving test, a fuzzy logic controller is established using Matlab/Simulink, and the speed and torque analysis of the components related to power system performance are conducted. Through a dynamic simulation, it is revealed that this fuzzy logic controller can adjust the two power sources (the motor and internal combustion engine) appropriately. The internal combustion engine can be maintained in the optimal operating region with low, medium, and high driving speeds.


Sign in / Sign up

Export Citation Format

Share Document