scholarly journals Adult Hippocampal Neurogenesis in Alzheimer’s Disease: An Overview of Human and Animal Studies with Implications for Therapeutic Perspectives Aimed at Memory Recovery

2022 ◽  
Vol 2022 ◽  
pp. 1-18
Author(s):  
Stefano Farioli-Vecchioli ◽  
Valentina Ricci ◽  
Silvia Middei

The mammalian hippocampal dentate gyrus is a niche for adult neurogenesis from neural stem cells. Newborn neurons integrate into existing neuronal networks, where they play a key role in hippocampal functions, including learning and memory. In the ageing brain, neurogenic capability progressively declines while in parallel increases the risk for developing Alzheimer’s disease (AD), the main neurodegenerative disorder associated with memory loss. Numerous studies have investigated whether impaired adult neurogenesis contributes to memory decline in AD. Here, we review the literature on adult hippocampal neurogenesis (AHN) and AD by focusing on both human and mouse model studies. First, we describe key steps of AHN, report recent evidence of this phenomenon in humans, and describe the specific contribution of newborn neurons to memory, as evinced by animal studies. Next, we review articles investigating AHN in AD patients and critically examine the discrepancies among different studies over the last two decades. Also, we summarize researches investigating AHN in AD mouse models, and from these studies, we extrapolate the contribution of molecular factors linking AD-related changes to impaired neurogenesis. Lastly, we examine animal studies that link impaired neurogenesis to specific memory dysfunctions in AD and review treatments that have the potential to rescue memory capacities in AD by stimulating AHN.

2021 ◽  
Vol 13 ◽  
Author(s):  
Domenica Donatella Li Puma ◽  
Roberto Piacentini ◽  
Claudio Grassi

Adult hippocampal neurogenesis is a physiological mechanism contributing to hippocampal memory formation. Several studies associated altered hippocampal neurogenesis with aging and Alzheimer's disease (AD). However, whether amyloid-β protein (Aβ)/tau accumulation impairs adult hippocampal neurogenesis and, consequently, the hippocampal circuitry, involved in memory formation, or altered neurogenesis is an epiphenomenon of AD neuropathology contributing negligibly to the AD phenotype, is, especially in humans, still debated. The detrimental effects of Aβ/tau on synaptic function and neuronal viability have been clearly addressed both in in vitro and in vivo experimental models. Until some years ago, studies carried out on in vitro models investigating the action of Aβ/tau on proliferation and differentiation of hippocampal neural stem cells led to contrasting results, mainly due to discrepancies arising from different experimental conditions (e.g., different cellular/animal models, different Aβ and/or tau isoforms, concentrations, and/or aggregation profiles). To date, studies investigating in situ adult hippocampal neurogenesis indicate severe impairment in most of transgenic AD mice; this impairment precedes by several months cognitive dysfunction. Using experimental tools, which only became available in the last few years, research in humans indicated that hippocampal neurogenesis is altered in cognitive declined individuals affected by either mild cognitive impairment or AD as well as in normal cognitive elderly with a significant inverse relationship between the number of newly formed neurons and cognitive impairment. However, despite that such information is available, the question whether impaired neurogenesis contributes to AD pathogenesis or is a mere consequence of Aβ/pTau accumulation is not definitively answered. Herein, we attempted to shed light on this complex and very intriguing topic by reviewing relevant literature on impairment of adult neurogenesis in mouse models of AD and in AD patients analyzing the temporal relationship between the occurrence of altered neurogenesis and the appearance of AD hallmarks and cognitive dysfunctions.


2020 ◽  
Author(s):  
Idoia Blanco-Luquin ◽  
Juan Cabello ◽  
Amaya Urdánoz-Casado ◽  
Blanca Acha ◽  
Eva Ma Gómez-Orte ◽  
...  

ABSTRACTAdult hippocampal neurogenesis (AHN) study is still a challenge. In addition to methodological difficulties is the controversy of results derived of human or animal system approaches. In view of the proven link between AHN and learning and memory impairment, we generated a straightforward in vitro model to recapitulate adult neurogenesis in the context of Alzheimer’s disease (AD).Neural progenitor cells (NPCs) monolayer culture was differentiated for a period of 29 days and Aβ peptide 1-42 was administered once a week. mRNA expression of NEUROD1, NCAM1, TUBB3, RBFOX3, CALB1 and GFAP genes was determined by RT-qPCR.Phenotypic changes were observed during directed differentiation. Except for GFAP and CALB1, these changes correlated with altered expression profile of all genes since 9 days. Only TUBB3 expression remained constant while NEUROD1, NCAM1 and RBFOX3 expression increased over time. Moreover, Aβ treated NPCs showed transient decreases of mRNA expression for NCAM1, TUBB3 and RBFOX3 genes at 9 or 19 days.Our in vitro human NPCs model is framed within the multistep process of AHN in the SGZ of the DG. Remarkably, its transcriptional assessment might reflect alterations detected in AD human patients, deepening our understanding of the disorder and possibly of its pathogenesis.SUMMARY STATEMENTTranscriptional profile of a number of genes recapitulating particular stages of Adult hippocampal neurogenesis in the context of Alzheimer’s disease


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaolei Wu ◽  
Qi Shen ◽  
Zhan Zhang ◽  
Di Zhang ◽  
Ying Gu ◽  
...  

Abstract Background Adult hippocampal neurogenesis (AHN) is restricted under the pathological conditions of neurodegenerative diseases, especially in Alzheimer’s disease (AD). The drop of AHN reduces neural circuit plasticity, resulting in the decrease of the generation of newborn neurons in dentate gyrus (DG), which makes it difficult to recover from learning/memory dysfunction in AD, therefore, it is imperative to find a therapeutic strategy to promote neurogenesis and clarify its underlying mechanism involved. Methods Amyloid precursor protein/presenilin 1 (APP/PS1) mice were treated with photobiomodulation therapy (PBMT) for 0.1 mW/mm2 per day in the dark for 1 month (10 min for each day). The neural stem cells (NSCs) were isolated from hippocampus of APP/PS1 transgenic mice at E14, and the cells were treated with PBMT for 0.667 mW/mm2 in the dark (5 min for each time). Results In this study, photobiomodulation therapy (PBMT) is found to promote AHN in APP/PS1 mice. The latent transforming growth factor-β1 (LTGFβ1) was activated in vitro and in vivo during PBMT-induced AHN, which promoted the differentiation of hippocampal APP/PS1 NSCs into newborn neurons. In particular, behavioral experiments showed that PBMT enhanced the spatial learning/memory ability of APP/PS1 mice. Mechanistically, PBMT-stimulated reactive oxygen species (ROS) activates TGFβ/Smad signaling pathway to increase the interaction of the transcription factors Smad2/3 with Smad4 and competitively reduce the association of Smad1/5/9 with Smad4, thereby significantly upregulating the expression of doublecortin (Dcx)/neuronal class-III β-tubulin (Tuj1) and downregulating the expression of glial fibrillary acidic protein (GFAP). These in vitro effects were abrogated when eliminating ROS. Furthermore, specific inhibition of TGFβ receptor I (TGFβR I) attenuates the DNA-binding efficiency of Smad2/3 to the Dcx promotor triggered by PBMT. Conclusion Our study demonstrates that PBMT, as a viable therapeutic strategy, directs the adult hippocampal APP/PS1 NSCs differentiate towards neurons, which has great potential value for ameliorating the drop of AHN in Alzheimer’s disease mice.


2021 ◽  
Vol 22 (19) ◽  
pp. 10744
Author(s):  
Bolanle Fatimat Olabiyi ◽  
Catherine Fleitas ◽  
Bahira Zammou ◽  
Isidro Ferrer ◽  
Claire Rampon ◽  
...  

In recent decades, neurogenesis in the adult brain has been well demonstrated in a number of animal species, including humans. Interestingly, work with rodents has shown that adult neurogenesis in the dentate gyrus (DG) of the hippocampus is vital for some cognitive aspects, as increasing neurogenesis improves memory, while its disruption triggers the opposite effect. Adult neurogenesis declines with age and has been suggested to play a role in impaired progressive learning and memory loss seen in Alzheimer’s disease (AD). Therefore, therapeutic strategies designed to boost adult hippocampal neurogenesis may be beneficial for the treatment of AD. The precursor forms of neurotrophins, such as pro-NGF, display remarkable increase during AD in the hippocampus and entorhinal cortex. In contrast to mature NGF, pro-NGF exerts adverse functions in survival, proliferation, and differentiation. Hence, we hypothesized that pro-NGF and its p75 neurotrophin receptor (p75NTR) contribute to disrupting adult hippocampal neurogenesis during AD. To test this hypothesis, in this study, we took advantage of the availability of mouse models of AD (APP/PS1), which display memory impairment, and AD human samples to address the role of pro-NGF/p75NTR signaling in different aspects of adult neurogenesis. First, we observed that DG doublecortin (DCX) + progenitors express p75NTR both, in healthy humans and control animals, although the percentage of DCX+ cells are significantly reduced in AD. Interestingly, the expression of p75NTR in these progenitors is significantly decreased in AD conditions compared to controls. In order to assess the contribution of the pro-NGF/p75NTR pathway to the memory deficits of APP/PS1 mice, we injected pro-NGF neutralizing antibodies (anti-proNGF) into the DG of control and APP/PS1 mice and animals are subjected to a Morris water maze test. Intriguingly, we observed that anti-pro-NGF significantly restored memory performance of APP/PS1 animals and significantly increase the percentage of DCX+ progenitors in the DG region of these animals. In summary, our results suggest that pro-NGF is involved in disrupting spatial memory in AD, at least in part by blocking adult neurogenesis. Moreover, we propose that adult neurogenesis alteration should be taken into consideration for better understanding of AD pathology. Additionally, we provide a new molecular entry point (pro-NGF/p75NTR signaling) as a promising therapeutic target in AD.


2021 ◽  
Author(s):  
Bolanle Olabiyi ◽  
Catherine Fleitas ◽  
Bahira Zammou ◽  
Isidro Ferrer ◽  
Claire Rampon ◽  
...  

Abstract In recent decades, neurogenesis in adult brain has been well demonstrated in a number of animal species, including humans. Interestingly, work with rodents has shown that adult neurogenesis in the dentate gyrus (DG) of the hippocampus is vital for some cognitive aspects, as increasing neurogenesis improves memory while its disruption triggers the opposite effect. Adult neurogenesis declines with age and has been suggested to play a role in impaired progressive learning and memory loss seen in Alzheimer’s disease (AD). Therefore, therapeutic strategies designed to boost adult hippocampal neurogenesis may be beneficial for the treatment of AD. The precursor forms of neurotrophins, such as pro-NGF, display remarkable increase during AD in the hippocampus and entorhinal cortex. In contrast to mature NGF, pro-NGF exerts adverse functions in survival, proliferation and differentiation. Hence, we hypothesized that pro-NGF and its receptor p75NTR contribute to disrupting adult hippocampal neurogenesis during AD. In this study, we took advantage of the availability of mouse models of AD (APP/PS1) and AD human samples to address the role of pro-NGF/p75NTR signalling in different aspects of adult neurogenesis. Neuroprogenitors of adult mice and human DG samples were identified by immunofluorescence with doublecortin (DCX) antibodies. Interestingly, DCX + progenitors in healthy humans and control animals express p75 neurotrophin receptor (p75NTR). However, this expression is notably decreased in AD conditions. In APP/PS1 mice, memory and cognition were severely impaired. In order to assess the contribution of the pro-NGF/p75NTR pathway to these memory deficits, we injected pro-NGF neutralizing antibodies (ANTI-PRONGF) into the DG of control and APP/PS1 mice which memory was evaluated in Morris water maze test. We observed that anti-pro-NGF injection significantly improved the performance of APP/PS1 animals, but not controls. Interestingly, improved memory in APP/PS1 animals after injection of ANTI-PRONGF correlated with an increase in DCX + progenitors in the DG region of these animals. In summary, our results suggest that pro-NGF is involved in disrupting spatial memory in AD, at least in part by blocking adult neurogenesis. Moreover, we propose that adult neurogenesis alteration could serve as alternative approach towards understanding AD pathology, and additionally offer pro-NGF/p75NTR signalling as a promising therapeutic target.


2018 ◽  
Vol 19 (12) ◽  
pp. 4026 ◽  
Author(s):  
Soo Shin ◽  
Yu-on Jeong ◽  
Seong Jeon ◽  
Sujin Kim ◽  
Seong-kyung Lee ◽  
...  

Alzheimer’s disease (AD) is a neurodegenerative disease, which is accompanied by memory loss and cognitive dysfunction. Although a number of trials to treat AD are in progress, there are no drugs available that inhibit the progression of AD. As the aggregation of amyloid-β (Aβ) peptides in the brain is considered to be the major pathology of AD, inhibition of Aβ aggregation could be an effective strategy for AD treatment. Jowiseungchungtang (JWS) is a traditional oriental herbal formulation that has been shown to improve cognitive function in patients or animal models with dementia. However, there are no reports examining the effects of JWS on Aβ aggregation. Thus, we investigated whether JWS could protect against both Aβ aggregates and Aβ-mediated pathology such as neuroinflammation, neurodegeneration, and impaired adult neurogenesis in 5 five familial Alzheimer’s disease mutations (5XFAD) mice, an animal model for AD. In an in vitro thioflavin T assay, JWS showed a remarkable anti-Aβ aggregation effect. Histochemical analysis indicated that JWS had inhibitory effects on Aβ aggregation, Aβ-induced pathologies, and improved adult hippocampal neurogenesis in vivo. Taken together, these results suggest the therapeutic possibility of JWS for AD targeting Aβ aggregation, Aβ-mediated neurodegeneration, and impaired adult hippocampal neurogenesis.


2021 ◽  
Vol 22 (14) ◽  
pp. 7339
Author(s):  
Julia Leschik ◽  
Beat Lutz ◽  
Antonietta Gentile

Newborn neurons in the adult hippocampus are regulated by many intrinsic and extrinsic cues. It is well accepted that elevated glucocorticoid levels lead to downregulation of adult neurogenesis, which this review discusses as one reason why psychiatric diseases, such as major depression, develop after long-term stress exposure. In reverse, adult neurogenesis has been suggested to protect against stress-induced major depression, and hence, could serve as a resilience mechanism. In this review, we will summarize current knowledge about the functional relation of adult neurogenesis and stress in health and disease. A special focus will lie on the mechanisms underlying the cascades of events from prolonged high glucocorticoid concentrations to reduced numbers of newborn neurons. In addition to neurotransmitter and neurotrophic factor dysregulation, these mechanisms include immunomodulatory pathways, as well as microbiota changes influencing the gut-brain axis. Finally, we discuss recent findings delineating the role of adult neurogenesis in stress resilience.


2021 ◽  
Vol 16 (4) ◽  
pp. 681-693 ◽  
Author(s):  
Kelsey R. Babcock ◽  
John S. Page ◽  
Justin R. Fallon ◽  
Ashley E. Webb

Sign in / Sign up

Export Citation Format

Share Document