scholarly journals Wave Propagations in Nonlinear Low-Pass Electrical Transmission Lines through Optical Fiber Medium

2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Aniqa Zulfiqar ◽  
Jamshad Ahmad ◽  
Attia Rani ◽  
Qazi Mahmood Ul Hassan

The present article discovers the new soliton wave solutions and their propagation in nonlinear low-pass electrical transmission lines (NLETLs). Based on an innovative Exp-function method, multitype soliton solutions of nonlinear fractional evolution equations of NLETLs are established. The equation is reformulated to a fractional-order derivative by using the Jumarie operator. Some new results are also presented graphically to understand the real physical importance of the studied model equation. The physical interpretation of waves is represented in the form of three-dimensional and contour graphs to visualize the underlying dynamic behavior of these solutions for particular values of the parameters. Moreover, the attained outcomes are generally new for the considered model equation, and the results show that the used method is efficient, direct, and concise which can be used in more complex phenomena.

2021 ◽  
pp. 2150383
Author(s):  
Onur Alp Ilhan ◽  
Sadiq Taha Abdulazeez ◽  
Jalil Manafian ◽  
Hooshmand Azizi ◽  
Subhiya M. Zeynalli

Under investigation in this paper is the generalized Konopelchenko–Dubrovsky–Kaup-Kupershmidt equation. Based on bilinear method, the multiple rogue wave (RW) solutions and the novel multiple soliton solutions are constructed by giving some specific activation functions for the considered model. By means of symbolic computation, these analytical solutions and corresponding rogue wave solutions are obtained via Maple 18 software. The exact lump and RW solutions, by solving the under-determined nonlinear system of algebraic equations for the specified parameters, will be constructed. Via various three-dimensional plots and density plots, dynamical characteristics of these waves are exhibited.


2012 ◽  
Vol 14 (03) ◽  
pp. 1250016 ◽  
Author(s):  
JOACHIM ESCHER ◽  
MARCUS WUNSCH

We prove that several evolution equations arising as mathematical models for fluid motion cannot be realized as metric Euler equations on the Lie group DIFF∞(𝕊1) of all smooth and orientation-preserving diffeomorphisms on the circle. These include the quasi-geostrophic model equation, cf. [A. Córdoba, D. Córdoba and M. A. Fontelos, Formation of singularities for a transport equation with nonlocal velocity, Ann. of Math. 162 (2005) 1377–1389], the axisymmetric Euler flow in ℝd (see [H. Okamoto and J. Zhu, Some similarity solutions of the Navier–Stokes equations and related topics, Taiwanese J. Math. 4 (2000) 65–103]), and De Gregorio's vorticity model equation as introduced in [S. De Gregorio, On a one-dimensional model for the three-dimensional vorticity equation, J. Stat. Phys. 59 (1990) 1251–1263].


2020 ◽  
Vol 34 (30) ◽  
pp. 2050291 ◽  
Author(s):  
Usman Younas ◽  
Aly R. Seadawy ◽  
M. Younis ◽  
S. T. R. Rizvi

This paper investigates the new solitons and closed form solutions to [Formula: see text] dimensional resonant nonlinear Schrödinger equation (RNLSE) that explains the behavior of waves with the effect of group velocity dispersion and resonant nonlinearities in the optical fiber. The soliton solutions in single and combined forms like dark, singular, and dark-singular in mixed form are extracted by means of two innovative integration norms namely extended sinh-Gordon equation expansion and [Formula: see text]-expansion function methods. Moreover, kink and closed form solutions are also observed under different constraint conditions. By choosing the suitable selection of the parameters, three dimensional, two dimensional, and contour plots are sketched. The obtained outcomes show that the applied computational strategies are direct, efficient, concise and can be implemented in more complex phenomena with the assistant of symbolic computations.


2022 ◽  
Author(s):  
Sachin Kumar ◽  
Nikita Mann ◽  
Harsha Kharbanda

Abstract Nonlinear evolution equations (NLEEs) are extensively used to establish the elementary propositions of natural circumstances. In this work, we study the Konopelchenko-Dubrovsky (KD) equation which depicts non-linear waves in mathematical physics with weak dispersion. The considered model is investigated using the combination of generalized exponential rational function (GERF) method and dynamical system method. The GERF method is utilized to generate closedform invariant solutions to the (2+1)-dimensional KD model in terms of trigonometric, hyperbolic, and exponential forms with the assistance of symbolic computations. Moreover, three-dimensional graphics are displayed to depict the behavior of obtained solitary wave solutions. The model is observed to have single and multiple soliton profiles, kink-wave profiles, and periodic oscillating nonlinear waves. These generated solutions have never been published in the literature. All the newly generated soliton solutions are checked by putting them back into the associated system with the soft computation via Wolfram Mathematica. Moreover, the system is converted into a planer dynamical system using a certain transformation and the analysis of bifurcation is examined. Furthermore, the quasi-periodic solution is investigated numerically for the perturbed system by inserting definite periodic forces into the considered model. With regard to the parameter of the perturbed model, two-dimensional and three-dimensional phase portraits are plotted.


Sign in / Sign up

Export Citation Format

Share Document