scholarly journals M/G/1 vacation model with limited service discipline and hybrid switching-on policy

1997 ◽  
Vol 3 (3) ◽  
pp. 243-253
Author(s):  
Alexander V. Babitsky

The author studies an M/G/1 queueing system with multiple vacations. The server is turned off in accordance with the K-limited discipline, and is turned on in accordance with the T-N-hybrid policy. This is to say that the server will begin a vacation from the system if either the queue is empty orKcustomers were served during a busy period. The server idles until it finds at leastNwaiting units upon return from a vacation.Formulas for the distribution generating function and some characteristics of the queueing process are derived. An optimization problem is discussed.

1988 ◽  
Vol 25 (2) ◽  
pp. 404-412 ◽  
Author(s):  
Julian Keilson ◽  
Ravi Ramaswamy

The vacation model studied is an M/G/1 queueing system in which the server attends iteratively to ‘secondary' or ‘vacation' tasks at ‘primary' service completion epochs, when the primary queue is exhausted. The time-dependent and steady-state distributions of the backlog process [6] are obtained via their Laplace transforms. With this as a stepping stone, the ergodic distribution of the depletion time [5] is obtained. Two decomposition theorems that are somewhat different in character from those available in the literature [2] are demonstrated. State space methods and simple renewal-theoretic tools are employed.


1980 ◽  
Vol 12 (2) ◽  
pp. 501-516 ◽  
Author(s):  
Do Le Minh

This paper studies the GI/G/1 queueing system in which no customer can stay longer than a fixed interval D. This is also a model for the dam with finite capacity, instantaneous water supply and constant release rule. Using analytical method together with the property that the queueing process ‘starts anew’ probabilistically whenever an arriving customer initiates a busy period, we obtain various transient and stationary results for the system.


1974 ◽  
Vol 11 (03) ◽  
pp. 618-623
Author(s):  
B. W. Conolly

A continued fraction representation is presented of the Laplace transform of the generating function of the fundamental joint probability and density of busy period length measured in customers served and duration in time. The setting is the single server Erlang queueing system where the parameters of negative exponentially distributed arrival and service times have a general dependence on instantaneous system state.


2016 ◽  
Vol 26 (2) ◽  
pp. 379-390 ◽  
Author(s):  
Ivan Atencia

Abstract This paper considers a discrete-time queueing system in which an arriving customer can decide to follow a last come first served (LCFS) service discipline or to become a negative customer that eliminates the one at service, if any. After service completion, the server can opt for a vacation time or it can remain on duty. Changes in the vacation times as well as their associated distribution are thoroughly studied. An extensive analysis of the system is carried out and, using a probability generating function approach, steady-state performance measures such as the first moments of the busy period of the queue content and of customers delay are obtained. Finally, some numerical examples to show the influence of the parameters on several performance characteristics are given.


1993 ◽  
Vol 14 (3-4) ◽  
pp. 349-367 ◽  
Author(s):  
Shoji Kasahara ◽  
Tetsuya Takine ◽  
Yutaka Takahashi ◽  
Toshiharu Hasegawa

1980 ◽  
Vol 12 (02) ◽  
pp. 501-516 ◽  
Author(s):  
Do Le Minh

This paper studies the GI/G/1 queueing system in which no customer can stay longer than a fixed interval D. This is also a model for the dam with finite capacity, instantaneous water supply and constant release rule. Using analytical method together with the property that the queueing process ‘starts anew’ probabilistically whenever an arriving customer initiates a busy period, we obtain various transient and stationary results for the system.


1996 ◽  
Vol 2 (2) ◽  
pp. 95-106 ◽  
Author(s):  
Jewgeni H. Dshalalow ◽  
Jay Yellen

The authors study a single-server queueing system with bulk arrivals and batch service in accordance to the general quorum discipline: a batch taken for service is not less thanrand not greater thanR(≥r). The server takes vacations each time the queue level falls belowr(≥1)in accordance with the multiple vacation discipline. The input to the system is assumed to be a compound Poisson process. The analysis of the system is based on the theory of first excess processes developed by the first author. A preliminary analysis of such processes enabled the authors to obtain all major characteristics for the queueing process in an analytically tractable form. Some examples and applications are given.


1988 ◽  
Vol 25 (02) ◽  
pp. 404-412 ◽  
Author(s):  
Julian Keilson ◽  
Ravi Ramaswamy

The vacation model studied is an M/G/1 queueing system in which the server attends iteratively to ‘secondary' or ‘vacation' tasks at ‘primary' service completion epochs, when the primary queue is exhausted. The time-dependent and steady-state distributions of the backlog process [6] are obtained via their Laplace transforms. With this as a stepping stone, the ergodic distribution of the depletion time [5] is obtained. Two decomposition theorems that are somewhat different in character from those available in the literature [2] are demonstrated. State space methods and simple renewal-theoretic tools are employed.


Sign in / Sign up

Export Citation Format

Share Document