scholarly journals Flagellin Alleviates Airway Allergic Response by Stabilizing Eosinophils through Modulating Oxidative Stress

2021 ◽  
pp. 1-12
Author(s):  
Xiang-Qian Luo ◽  
Jun Liu ◽  
Li-Hua Mo ◽  
Gui Yang ◽  
Fei Ma ◽  
...  

Eosinophil (Eo) degranulation plays a central role in the initiations of allergic attacks. Flagellin (FGN), the major component of bacterial flagella, has immune regulatory functions. This study aims to investigate the role of FGN in alleviating the allergic reaction by stabilizing Eos. A toll-like receptor 5-knockout mouse strain was employed to test the role of FGN in stabilizing Eos. An airway allergy mouse model was developed to test the administration of FGN in alleviating the airway allergy by stabilizing Eos. The results showed that FGN was required in stabilizing Eos in the airway tissues. FGN prevented specific antigen-induced Eo activation. Oxidative stress was associated with the antigen-induced Eo activation that could be counteracted by the presence of FGN. The FGN levels were lower and chymase levels were higher in the airway tissues of mice with allergic inflammation. Negative correlation was detected between the data of FGN and chymase in the lung tissues. Chymase physically contacted FGN to speed up its degradation. The administration of FGN alleviated experimental allergic inflammation in the mouse airways by stabilized Eos in the lung tissues. In conclusion, FGN contributes to Eo stabilization. The administration of FGN alleviates the experimental airway allergy. The data suggest that FGN can be a candidate to be employed in the treatment of allergic disorders.

Diagnostics ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 668
Author(s):  
Andrej Veljković ◽  
Jovan Hadži-Dokić ◽  
Dušan Sokolović ◽  
Dragoslav Bašić ◽  
Ljubinka Veličković-Janković ◽  
...  

Prostate cancer (PC) is one of the most frequent malignancies. Better biomarkers are constantly wanted, such as those which can help with the prediction of cancer behavior. What is also needed is a marker which may serve as a possible therapeutic target. Oxidative stress (OS), which is a hallmark of cancer, is included in the pathogenesis and progression of PC. We have conducted the present study to determine whether xanthine oxidase/dehydrogenase activity is the source of OS in prostate tissue. We have also determined the concentration of TBA-reactive substances (TBARS) and advanced oxidation protein products (AOPP), as well as the activity of catalase. Xanthine oxidase (XO) activity is significantly higher (p < 0.001) in tumor tissue when compared to the control healthy tissue. The concentration of TBARS (p < 0.001) and AOPP (p < 0.05) are also higher in tumor tissue. Catalase has raised its activity (p < 0.05) versus the control. There is also a strong correlation between XO activity and prostate-specific antigen (PSA) levels in the serum. These results indicate a significant role of XO activity in OS in prostate carcinogenesis, and it could be a possible theranostic biomarker, which can be important for a better understanding of the disease, its evolution, and prognosis. A promising treatment may be using XO inhibitors such as allopurinol as adjuvant therapy.


2014 ◽  
Vol 2014 ◽  
pp. 1-20 ◽  
Author(s):  
Huiyun Zhang ◽  
Xiaoning Zeng ◽  
Shaoheng He

Protease activated receptors (PARs) have been recognized as a distinctive four-member family of seven transmembrane G protein-coupled receptors (GPCRs) that can be cleaved by certain serine proteases. In recent years, there has been considerable interest in the role of PARs in allergic inflammation, the fundamental pathologic changes of allergy, but the potential roles of PARs in allergy remain obscure. Since many of these proteases are produced and actively involved in the pathologic process of inflammation including exudation of plasma components, inflammatory cell infiltration, and tissue damage and repair, PARs appear to make important contribution to allergy. The aim of the present review is to summarize the expression of PARs in inflammatory and structural cells, the influence of agonists or antagonists of PARs on cell behavior, and the involvement of PARs in allergic disorders, which will help us to better understand the roles of serine proteases and PARs in allergy.


2017 ◽  
Vol 63 (1) ◽  
pp. 85-91 ◽  
Author(s):  
Fabiane Valentini Francisqueti ◽  
◽  
Lidiana Camargo Talon Chiaverini ◽  
Klinsmann Carolo dos Santos ◽  
Igor Otávio Minatel ◽  
...  

Summary Metabolic syndrome (MetS) has a high prevalence around the world. Considering the components used to classify MetS, it is clear that it is closely related to obesity. These two conditions begin with an increase in abdominal adipose tissue, which is metabolically more active, containing a greater amount of resident macrophages compared to other fat deposits. Abdominal adiposity promotes inflammation and oxidative stress, which are precursors of various complications involving MetS components, namely insulin resistance, hypertension and hyperlipidemia. One way to block the effects of oxidative stress would be through the antioxidant defense system, which offsets the excess free radicals. It is known that individuals with metabolic syndrome and obesity have high consumption of fats and sugars originated from processed foods containing high levels of sodium as well as low intake of fruits and vegetables, thus maintaining a state of oxidative stress, that can speed up the onset of MetS. Healthy eating habits could prevent or delay MetS by adding antioxidant-rich foods into the diet.


1986 ◽  
Vol 87 (4) ◽  
pp. 751-756 ◽  
Author(s):  
Noriyasu Hirasawa ◽  
Kazuo Ohuchi ◽  
Kazuo Sugio ◽  
Susumu Tsurufuji ◽  
Masako Watanabe ◽  
...  

2020 ◽  
Vol 14 ◽  
Author(s):  
Michael R. Volkert ◽  
David J. Crowley

Parkinson’s disease, diabetic retinopathy, hyperoxia induced retinopathy, and neuronal damage resulting from ischemia are among the notable neurodegenerative diseases in which oxidative stress occurs shortly before the onset of neurodegeneration. A shared feature of these diseases is the depletion of OXR1 (oxidation resistance 1) gene products shortly before the onset of neurodegeneration. In animal models of these diseases, restoration of OXR1 has been shown to reduce or eliminate the deleterious effects of oxidative stress induced cell death, delay the onset of symptoms, and reduce overall severity. Moreover, increasing OXR1 expression in cells further increases oxidative stress resistance and delays onset of disease while showing no detectable side effects. Thus, restoring or increasing OXR1 function shows promise as a therapeutic for multiple neurodegenerative diseases. This review examines the role of OXR1 in oxidative stress resistance and its impact on neurodegenerative diseases. We describe the potential of OXR1 as a therapeutic in light of our current understanding of its function at the cellular and molecular level and propose a possible cascade of molecular events linked to OXR1’s regulatory functions.


2021 ◽  
Vol 2 ◽  
Author(s):  
Araceli Díaz-Perales ◽  
Maria M. Escribese ◽  
María Garrido-Arandia ◽  
David Obeso ◽  
Elena Izquierdo-Alvarez ◽  
...  

Allergy is defined as a complex chronic inflammatory condition in which genetic and environmental factors are implicated. Sphingolipids are involved in multiple biological functions, from cell membrane components to critical signaling molecules. To date, sphingolipids have been studied in different human pathologies such as neurological disorders, cancer, autoimmunity, and infections. Sphingolipid metabolites, in particular, ceramide and sphingosine-1-phosphate (S1P), regulate a diverse range of cellular processes that are important in immunity and inflammation. Moreover, variations in the sphingolipid concentrations have been strongly associated with allergic diseases. This review will focus on the role of sphingolipids in the development of allergic sensitization and allergic inflammation through the activation of immune cells resident in tissues, as well as their role in barrier remodeling and anaphylaxis. The knowledge gained in this emerging field will help to develop new therapeutic options for allergic disorders.


Blood ◽  
2007 ◽  
Vol 110 (3) ◽  
pp. 913-920 ◽  
Author(s):  
Kazushige Obata ◽  
Kaori Mukai ◽  
Yusuke Tsujimura ◽  
Kenji Ishiwata ◽  
Yohei Kawano ◽  
...  

Abstract Basophils represent less than 1% of peripheral blood leukocytes and have often been considered as minor and possibly redundant circulating mast cells. The recent finding that basophils readily generate large quantities of T helper 2 (Th2) cytokines such as IL-4 provided new insights into the possible role of basophils in allergic disorders and immunity to pathogens. However, in-depth studies on basophils, particularly their functions in vivo, have been hampered by the lack of appropriate animal models, such as mutant animals deficient only in basophils. Here, we established a mAb that reacted with mouse basophils and depleted them when administered in vivo. The mAb treatment of mice did not show any significant effect on classical allergic reactions such as passive cutaneous anaphylaxis and contact hypersensitivity. In contrast, it completely abolished the development of IgE-mediated chronic allergic dermatitis that is characterized by massive eosinophil infiltration, even though basophils accounted for only approximately 2% of the infiltrates. The treatment during the progression of the dermatitis resulted in drastic reduction in numbers of infiltrating eosinophils and neutrophils, concomitantly with elimination of basophils from the skin lesions. Thus, basophils play a pivotal role in the development of IgE-mediated chronic allergic inflammation, as an initiator rather than as an effector.


Life Sciences ◽  
2017 ◽  
Vol 184 ◽  
pp. 18-24 ◽  
Author(s):  
Sun-Young Nam ◽  
Hyung-Min Kim ◽  
Hyun-Ja Jeong

Sign in / Sign up

Export Citation Format

Share Document