Circ_ROBO2/miR-149 Axis Promotes the Proliferation and Migration of Human Aortic Smooth Muscle Cells by Activating NF-κB Signaling

2021 ◽  
pp. 1-11
Author(s):  
Dong-Sheng Lin ◽  
Chi-Yuan Zhang ◽  
Liang Li ◽  
Guo-Hong Ye ◽  
Lu-Ping Jiang ◽  
...  

Atherosclerosis is the leading global cause of mortality. The occurrence of coronary artery disease (CAD) is regulated by a diversity of pathways, including circRNAs. However, the potential mechanisms of circRNAs in CAD remain unclear. Here, qRT-PCR was used to examine the expressions of miR-149 and circ_ROBO2. Their influences on cell proliferation, migration, and apoptosis were measured by CCK-8, trans­well, and flow cytometry assays, respectively. The protein levels of p-IκBα and NF-κB p65 were examined using western blot. The molecular interactions were validated using dual luciferase reporter and RNA pull-down assays. The expression patterns of circ_ROBO2 and miR-149 in CAD patients and PDGF-BB-treated human aortic smooth muscle cells (HASMCs) were upregulated and downregulated, respectively. Knockdown of circ_ROBO2 could markedly inhibit the capabilities of proliferation and migration, enhance the apoptotic rate, and suppress NF-κB signaling in PDGF-BB-treated HASMCs. Mechanistically, circ_ROBO2 acted as a sponge of miR-149 to activate TRAF6/NF-κB signaling. Rescue studies demonstrated that neither silencing miR-149 nor activation of NF-κB signaling obviously abolished the biological roles of circ_ROBO2 knockdown in PDGF-BB treated-HASMCs. This discovery elucidated a functional mechanism of circ_ROBO2 in CAD, suggesting that circRNAs serve a vital role in the progression of CAD.

Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1642-1652
Author(s):  
Yuan Bian ◽  
Wenqiang Cai ◽  
Hongying Lu ◽  
Shuhong Tang ◽  
Keqin Yang ◽  
...  

Abstract We explore miR‐150‐5p in atherosclerosis (AS). The AS model was constructed using Apo E−/− mice with an injection of the miR-150-5p mimic or an inhibitor. Pathological characteristics were assessed using Oil red O staining and Masson staining. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot were used to analyze the expressions of microRNA-150-5p (miR-150-5p), STAT1, α-SMA (α-smooth muscle actin) and proliferating cell nuclear antigen (PCNA). Targetscan and dual-luciferase reporter assay were used to analyze the interaction between miR-150-5p and STAT1. The viability, migration, cell cycle and α-SMA and PCNA expressions in oxidized low-density lipoprotein (ox-LDL)-stimulated primary human aortic smooth muscle cells (ASMCs) were assessed using molecular experiments. miR-150-5p was reduced in both AS mice and ox-LDL-stimulated human aortic smooth muscle cells but STAT1 had the opposite effect. The miR‐150‐5p inhibitor alleviated the increase of lipid plaque and reduced collagen accumulation in the aortas during AS. Upregulation of α-SMA and PCNA was reversed by miR-150-5p upregulation. STAT1 was targeted by miR‐150‐5p, and overexpressed miR-150-5p weakened the ox-LDL-induced increase of viability and migration abilities and blocked cell cycle in ASMCs, but overexpressed STAT1 blocked the effect of the miR‐150‐5p mimic. This paper demonstrates that miR-150-5p has potential as a therapeutic target in AS, with plaque stabilization by regulating ASMC proliferation and migration via STAT1.


Sign in / Sign up

Export Citation Format

Share Document