scholarly journals Ataxia Telangiectasia and Rad3-Related Activation by DNA Damage Mitigates Maladaptive Repair after Acute Kidney Injury

Nephron ◽  
2021 ◽  
pp. 1-4
Author(s):  
Joseph V. Bonventre

DNA damage is an important consequence of injury to the proximal tubule. The proximal tubule cell responds to this damage by mounting a DNA damage response (DDR). Two protein kinases, ataxia-telangiectasia mutated (ATM) or ataxia telangiectasia and Rad3-related (ATR), play an important role in this DDR. If efficient, the DDR can lead to repair of the DNA, cell renewal, and return to a healthy state. In many cases, however, especially in the setting of baseline kidney injury, there is incomplete repair. In human chronic kidney disease (CKD) and in human kidney organoids exposed to acute injury, there is increased evidence of DNA damage and activation of ATR. This review focuses on 3 aspects of the DNA damage and response to it: (1) DNA damage and the DDR precipitated by acute injury; (2) protection afforded by the DDR kinase, ATR, in multiple mouse models of acute kidney injury; and (3) downstream effects of genetic inhibition of ATR in the proximal tubule, leading to maladaptive repair, fibrosis, and CKD.

2020 ◽  
Vol 117 (27) ◽  
pp. 15874-15883 ◽  
Author(s):  
Yuhei Kirita ◽  
Haojia Wu ◽  
Kohei Uchimura ◽  
Parker C. Wilson ◽  
Benjamin D. Humphreys

After acute kidney injury (AKI), patients either recover or alternatively develop fibrosis and chronic kidney disease. Interactions between injured epithelia, stroma, and inflammatory cells determine whether kidneys repair or undergo fibrosis, but the molecular events that drive these processes are poorly understood. Here, we use single nucleus RNA sequencing of a mouse model of AKI to characterize cell states during repair from acute injury. We identify a distinct proinflammatory and profibrotic proximal tubule cell state that fails to repair. Deconvolution of bulk RNA-seq datasets indicates that this failed-repair proximal tubule cell (FR-PTC) state can be detected in other models of kidney injury, increasing during aging in rat kidney and over time in human kidney allografts. We also describe dynamic intercellular communication networks and discern transcriptional pathways driving successful vs. failed repair. Our study provides a detailed description of cellular responses after injury and suggests that the FR-PTC state may represent a therapeutic target to improve repair.


2019 ◽  
Author(s):  
Jenny L. M. Digby ◽  
Aneta Przepiorski ◽  
Alan J. Davidson ◽  
Veronika Sander

ABSTRACTAcute kidney injury (AKI) remains a major global healthcare problem and there is a need to develop human-based models to study AKI in vitro. Towards this goal, we have characterized induced pluripotent stem cell-derived human kidney organoids and their response to cisplatin, a chemotherapeutic drug that induces AKI and preferentially damages the proximal tubule. We found that a single treatment with 50 µM cisplatin induces HAVCR1 and CXCL8 expression, DNA damage (γH2AX) and cell death in the organoids in a dose-dependent manner but greatly impairs organoid viability. DNA damage was not specific to the proximal tubule but also affected the distal tubule and interstitial populations. This lack of specificity correlated with low expression of the proximal tubule-specific SLC22A2/OCT2 transporter for cisplatin. To improve viability, we developed a repeated low-dose regimen of 4x 5 µM cisplatin over 7 days and found this causing less toxicity while still inducing a robust AKI response that included secretion of known AKI biomarkers and inflammatory cytokines. This work validates the use of human kidney organoids to model aspects of AKI in vitro, with the potential to identify new AKI biomarkers and develop better therapies.


Author(s):  
Yuhei Kirita ◽  
Haojia Wu ◽  
Kohei Uchimura ◽  
Parker C. Wilson ◽  
Benjamin D. Humphreys

AbstractAfter acute kidney injury (AKI), patients either recover or alternatively develop fibrosis and chronic kidney disease. Interactions between injured epithelia, stroma and inflammatory cells determine whether kidneys repair or undergo fibrosis, but the molecular events that drive these processes are poorly understood. Here, we use single nucleus RNA sequencing of a mouse model of AKI to characterize cell states during repair from acute injury. We identify a distinct proinflammatory and profibrotic proximal tubule cell state that fails to repair. Deconvolution of bulk RNA-seq datasets indicates that this “failed-repair proximal tubule cell” or FR-PTC, state can be detected in other models of kidney injury, increasing in the aging rat kidney and over time in human kidney allografts. We also describe dynamic intercellular communication networks and discern transcriptional pathways driving successful vs. failed repair. Our study provides a detailed description of cellular responses after injury and suggests that the FR-PTC state may represent a therapeutic target to improve repair.Significance StatementSingle nucleus RNA sequencing revealed gene expression changes during repair after acute kidney injury. We describe a small population of proximal tubule cells that fail to repair (FR-PTC). Since this subpopulation expresses abundant pro-inflammatory and profibrotic genes, it may represent a new therapeutic target to improve repair and reduce fibrosis after AKI.


2021 ◽  
Vol 118 (27) ◽  
pp. e2026684118
Author(s):  
Louisa M. S. Gerhardt ◽  
Jing Liu ◽  
Kari Koppitch ◽  
Pietro E. Cippà ◽  
Andrew P. McMahon

Acute kidney injury (AKI), commonly caused by ischemia, sepsis, or nephrotoxic insult, is associated with increased mortality and a heightened risk of chronic kidney disease (CKD). AKI results in the dysfunction or death of proximal tubule cells (PTCs), triggering a poorly understood autologous cellular repair program. Defective repair associates with a long-term transition to CKD. We performed a mild-to-moderate ischemia–reperfusion injury (IRI) to model injury responses reflective of kidney injury in a variety of clinical settings, including kidney transplant surgery. Single-nucleus RNA sequencing of genetically labeled injured PTCs at 7-d (“early”) and 28-d (“late”) time points post-IRI identified specific gene and pathway activity in the injury–repair transition. In particular, we identified Vcam1+/Ccl2+ PTCs at a late injury stage distinguished by marked activation of NF-κB–, TNF-, and AP-1–signaling pathways. This population of PTCs showed features of a senescence-associated secretory phenotype but did not exhibit G2/M cell cycle arrest, distinct from other reports of maladaptive PTCs following kidney injury. Fate-mapping experiments identified spatially and temporally distinct origins for these cells. At the cortico-medullary boundary (CMB), where injury initiates, the majority of Vcam1+/Ccl2+ PTCs arose from early replicating PTCs. In contrast, in cortical regions, only a subset of Vcam1+/Ccl2+ PTCs could be traced to early repairing cells, suggesting late-arising sites of secondary PTC injury. Together, these data indicate even moderate IRI is associated with a lasting injury, which spreads from the CMB to cortical regions. Remaining failed-repair PTCs are likely triggers for chronic disease progression.


2020 ◽  
Vol 318 (4) ◽  
pp. F971-F978 ◽  
Author(s):  
Jenny L. M. Digby ◽  
Thitinee Vanichapol ◽  
Aneta Przepiorski ◽  
Alan J. Davidson ◽  
Veronika Sander

Acute kidney injury (AKI) remains a major global healthcare problem, and there is a need to develop human-based models to study AKI in vitro. Toward this goal, we have characterized induced pluripotent stem cell-derived human kidney organoids and their response to cisplatin, a chemotherapeutic drug that induces AKI and preferentially damages the proximal tubule. We found that a single treatment with 50 µM cisplatin induces hepatitis A virus cellular receptor 1 ( HAVCR1) and C-X-C motif chemokine ligand 8 ( CXCL8) expression, DNA damage (γH2AX), and cell death in the organoids but greatly impairs organoid viability. DNA damage was not specific to the proximal tubule but also affected the distal tubule and interstitial cell populations. This lack of specificity correlated with low expression of proximal tubule-specific SLC22A2/organic cation transporter 2 ( OCT2) for cisplatin. To improve viability, we developed a repeated low-dose regimen of 4 × 5 µM cisplatin over 7 days and found this caused less toxicity while still inducing a robust injury response that included secretion of known AKI biomarkers and inflammatory cytokines. This work validates the use of human kidney organoids to model aspects of cisplatin-induced injury, with the potential to identify new AKI biomarkers and develop better therapies.


2013 ◽  
Vol 304 (8) ◽  
pp. F1054-F1065 ◽  
Author(s):  
Punithavathi Ranganathan ◽  
Calpurnia Jayakumar ◽  
Ganesan Ramesh

Acute kidney injury-induced organ fibrosis is recognized as a major risk factor for the development of chronic kidney disease, which remains one of the leading causes of death in the developed world. However, knowledge on molecules that may suppress the fibrogenic response after injury is lacking. In ischemic models of acute kidney injury, we demonstrate a new function of netrin-1 in regulating interstitial fibrosis. Acute injury was promptly followed by a rise in serum creatinine in both wild-type and netrin-1 transgenic animals. However, the wild-type showed a slow recovery of kidney function compared with netrin-1 transgenic animals and reached baseline by 3 wk. Histological examination showed increased infiltration of interstitial macrophages, extensive fibrosis, reduction of capillary density, and glomerulosclerosis. Collagen IV and α-smooth muscle actin expression was absent in sham-operated kidneys; however, their expression was significantly increased at 2 wk and peaked at 3 wk after reperfusion. These changes were reduced in the transgenic mouse kidney, which overexpresses netrin-1 in proximal tubular epithelial cells. Fibrosis was associated with increased expression of IL-6 and extensive and chronic activation of STAT3. Administration of IL-6 exacerbated fibrosis in vivo in wild-type, but not in netrin-1 transgenic mice kidney and increased collagen I expression and STAT3 activation in vitro in renal epithelial cells subjected to hypoxia-reoxygenation, which was suppressed by netrin-1. Our data suggest that proximal tubular epithelial cells may play a prominent role in interstitial fibrosis and that netrin-1 could be a useful therapeutic agent for treating kidney fibrosis.


2017 ◽  
Vol 312 (2) ◽  
pp. F284-F296 ◽  
Author(s):  
David R. Emlet ◽  
Nuria Pastor-Soler ◽  
Allison Marciszyn ◽  
Xiaoyan Wen ◽  
Hernando Gomez ◽  
...  

We have characterized the expression and secretion of the acute kidney injury (AKI) biomarkers insulin-like growth factor binding protein 7 (IGFBP7) and tissue inhibitor of metalloproteinases-2 (TIMP-2) in human kidney epithelial cells in primary cell culture and tissue. We established cell culture model systems of primary kidney cells of proximal and distal tubule origin and observed that both proteins are indeed expressed and secreted in both tubule cell types in vitro. However, TIMP-2 is both expressed and secreted preferentially by cells of distal tubule origin, while IGFBP7 is equally expressed across tubule cell types yet preferentially secreted by cells of proximal tubule origin. In human kidney tissue, strong staining of IGFBP7 was seen in the luminal brush-border region of a subset of proximal tubule cells, and TIMP-2 stained intracellularly in distal tubules. Additionally, while some tubular colocalization of both biomarkers was identified with the injury markers kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin, both biomarkers could also be seen alone, suggesting the possibility for differential mechanistic and/or temporal profiles of regulation of these early AKI biomarkers from known markers of injury. Last, an in vitro model of ischemia-reperfusion demonstrated enhancement of secretion of both markers early after reperfusion. This work provides a rationale for further investigation of these markers for their potential role in the pathogenesis of acute kidney injury.


2020 ◽  
Vol 318 (1) ◽  
pp. F209-F215 ◽  
Author(s):  
Jun Zhou ◽  
Changlong An ◽  
Xiaogao Jin ◽  
Zhaoyong Hu ◽  
Robert L. Safirstein ◽  
...  

Cisplatin can cause acute kidney injury (AKI), but the molecular mechanisms are not well understood. The objective of the present study was to examine the role of transforming growth factor-β-activated kinase-1 (TAK1) in the pathogenesis of cisplatin-induced AKI. Wild-type mice and proximal tubule TAK1-deficient mice were treated with vehicle or cisplatin. Compared with wild-type control mice, proximal tubule TAK1-deficient mice had less severe kidney dysfunction, tubular damage, and apoptosis after cisplatin–induced AKI. Furthermore, conditional disruption of TAK1 in proximal tubular epithelial cells reduced caspase-3 activation, proinflammatory molecule expression, and JNK phosphorylation in the kidney in cisplatin-induced AKI. Taken together, cisplatin activates TAK1-JNK signaling pathway to promote tubular epithelial cell apoptosis and inflammation in cisplatin-induced AKI. Targeting TAK1 could be a novel therapeutic strategy against cisplatin-induced AKI.


Sign in / Sign up

Export Citation Format

Share Document