scholarly journals Immunohistochemical and Transcriptional Analysis of SARS-CoV-2 Entry Factors and Renin-Angiotensin-Aldosterone System Components in Lethal COVID-19

Pathobiology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Jasmin Dionne Haslbauer ◽  
Anna Stalder ◽  
Carl Zinner ◽  
Stefano Bassetti ◽  
Kirsten Diana Mertz ◽  
...  

<b><i>Introduction:</i></b> Since angiotensin converting enzyme-2 (ACE2) was discovered as an essential entry factor of SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), there has been conflicting evidence regarding the role of renin-angiotensin-aldosterone system (RAAS) in COVID-19. This study elucidates pulmonary expression patterns SARS-CoV-2 entry factors (ACE2 and transmembrane protease serine subtype 2, TMPRSS2) and RAAS components in lethal COVID-19. <b><i>Methods:</i></b> Lung tissue from COVID-19 autopsies (<i>n</i> = 27) and controls (<i>n</i> = 23) underwent immunohistochemical staining for RAAS components (angiotensin receptors 1 and 2, ACE2 and Mas-receptor) and bradykinin receptors 1 and 2. Staining of individual cellular populations (alveolar pneumocytes [ALV], desquamated cells [DES] and endothelium [END]) was measured by a binary scale (positive/negative). SARS-CoV-2 was detected using immunohistochemistry against nucleocapsid protein, <i>in-situ</i> hybridization and quantitative reverse transcriptase polymerase chain reaction. Gene expression profiling for <i>ACE2, ACE</i> and <i>TMPRSS2</i> was performed. <b><i>Results:</i></b> Subtle differences were observed when comparing COVID-19 patients and controls not reaching statistical significance, such as a higher incidence of ACE2-positivity in END (52% vs. 39%) but lower positivity in ALVs (63% vs. 70%) and an overall downregulation of <i>ACE2</i> gene expression (0.25 vs. 0.55). However, COVID-19 patients with RAAS inhibitor (RAASi) intake had significantly shorter hospitalization times (5 vs. 12 days), higher viral loads (57,517 vs. 15,980/10<sup>6</sup> RNase P-gene copies) and decreased <i>ACE/ACE2</i>-expression ratios (4.58 vs. 11.07) than patients without. <i>TMPRSS2</i> expression was significantly (1.76-fold) higher in COVID-19 patients than controls. <b><i>Conclusion:</i></b> Our study delineates the heterogeneous expression patterns of RAAS components in the lungs, which vary amongst cellular populations, and implies that COVID-19 patients with RAASi-intake present with a more rapid disease progression, although this requires further investigation.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shauna Kehoe ◽  
Katarina Jewgenow ◽  
Paul R. Johnston ◽  
Susan Mbedi ◽  
Beate C. Braun

AbstractIn vitro growth (IVG) of dormant primordial ovarian follicles aims to produce mature competent oocytes for assisted reproduction. Success is dependent on optimal in vitro conditions complemented with an understanding of oocyte and ovarian follicle development in vivo. Complete IVG has not been achieved in any other mammalian species besides mice. Furthermore, ovarian folliculogenesis remains sparsely understood overall. Here, gene expression patterns were characterised by RNA-sequencing in primordial (PrF), primary (PF), and secondary (SF) ovarian follicles from Felis catus (domestic cat) ovaries. Two major transitions were investigated: PrF-PF and PF-SF. Transcriptional analysis revealed a higher proportion in gene expression changes during the PrF-PF transition. Key influencing factors during this transition included the interaction between the extracellular matrix (ECM) and matrix metalloproteinase (MMPs) along with nuclear components such as, histone HIST1H1T (H1.6). Conserved signalling factors and expression patterns previously described during mammalian ovarian folliculogenesis were observed. Species-specific features during domestic cat ovarian folliculogenesis were also found. The signalling pathway terms “PI3K-Akt”, “transforming growth factor-β receptor”, “ErbB”, and “HIF-1” from the functional annotation analysis were studied. Some results highlighted mechanistic cues potentially involved in PrF development in the domestic cat. Overall, this study provides an insight into regulatory factors and pathways during preantral ovarian folliculogenesis in domestic cat.


2019 ◽  
Vol 18 ◽  
pp. 117693511983554 ◽  
Author(s):  
Ophir Gal ◽  
Noam Auslander ◽  
Yu Fan ◽  
Daoud Meerzaman

Machine learning (ML) is a useful tool for advancing our understanding of the patterns and significance of biomedical data. Given the growing trend on the application of ML techniques in precision medicine, here we present an ML technique which predicts the likelihood of complete remission (CR) in patients diagnosed with acute myeloid leukemia (AML). In this study, we explored the question of whether ML algorithms designed to analyze gene-expression patterns obtained through RNA sequencing (RNA-seq) can be used to accurately predict the likelihood of CR in pediatric AML patients who have received induction therapy. We employed tests of statistical significance to determine which genes were differentially expressed in the samples derived from patients who achieved CR after 2 courses of treatment and the samples taken from patients who did not benefit. We tuned classifier hyperparameters to optimize performance and used multiple methods to guide our feature selection as well as our assessment of algorithm performance. To identify the model which performed best within the context of this study, we plotted receiver operating characteristic (ROC) curves. Using the top 75 genes from the k-nearest neighbors algorithm (K-NN) model ( K = 27) yielded the best area-under-the-curve (AUC) score that we obtained: 0.84. When we finally tested the previously unseen test data set, the top 50 genes yielded the best AUC = 0.81. Pathway enrichment analysis for these 50 genes showed that the guanosine diphosphate fucose (GDP-fucose) biosynthesis pathway is the most significant with an adjusted P value = .0092, which may suggest the vital role of N-glycosylation in AML.


2020 ◽  
Author(s):  
Hiroto Yamamoto ◽  
Yutaro Uchida ◽  
Tomoki Chiba ◽  
Ryota Kurimoto ◽  
Takahide Matsushima ◽  
...  

AbstractBackgroundsSevoflurane is a most frequently used volatile anaesthetics, but its molecular mechanisms of action remain unclear. We hypothesized that specific genes play regulatory roles in whole brain exposed to sevoflurane. Thus, we aimed to evaluate the effects of sevoflurane inhalation and identify potential regulatory genes by RNA-seq analysis.MethodsEight-week old mice were exposed to sevoflurane. RNA from four medial prefrontal cortex, striatum, hypothalamus, and hippocampus were analysed using RNA-seq. Differently expressed genes were extracted. Their gene ontology terms and the transcriptome array data of the cerebral cortex of sleeping mice were analysed using Metascape, and the gene expression patterns were compared. Finally, the activities of transcription factors were evaluated using a weighted parametric gene set analysis (wPGSA). JASPAR was used to confirm the existence of binding motifs in the upstream sequences of the differently expressed genes.ResultsThe gene ontology term enrichment analysis result suggests that sevoflurane inhalation upregulated angiogenesis and downregulated neural differentiation in the whole brain. The comparison with the brains of sleeping mice showed that the gene expression changes were specific to anaesthetized mice. Sevoflurane induced Klf4 upregulation in the whole brain. The transcriptional analysis result suggests that KLF4 is a potential transcriptional regulator of angiogenesis and neural development.ConclusionsKlf4 was upregulated by sevoflurane inhalation in whole brain. KLF4 might promote angiogenesis and cause the appearance of undifferentiated neural cells by transcriptional regulation. The roles of KLF4 might be key to elucidating the mechanisms of sevoflurane induced functional modification in the brain.


2013 ◽  
Vol 24 (3) ◽  
pp. 246-260 ◽  
Author(s):  
Patricia L. Carlisle ◽  
David Kadosh

Candida albicans, the most common cause of human fungal infections, undergoes a reversible morphological transition from yeast to pseudohyphal and hyphal filaments, which is required for virulence. For many years, the relationship among global gene expression patterns associated with determination of specific C. albicans morphologies has remained obscure. Using a strain that can be genetically manipulated to sequentially transition from yeast to pseudohyphae to hyphae in the absence of complex environmental cues and upstream signaling pathways, we demonstrate by whole-genome transcriptional profiling that genes associated with pseudohyphae represent a subset of those associated with hyphae and are generally expressed at lower levels. Our results also strongly suggest that in addition to dosage, extended duration of filament-specific gene expression is sufficient to drive the C. albicans yeast-pseudohyphal-hyphal transition. Finally, we describe the first transcriptional profile of the C. albicans reverse hyphal-pseudohyphal-yeast transition and demonstrate that this transition involves not only down-regulation of known hyphal-specific, genes but also differential expression of additional genes that have not previously been associated with the forward transition, including many involved in protein synthesis. These findings provide new insight into genome-wide expression patterns important for determining fungal morphology and suggest that in addition to similarities, there are also fundamental differences in global gene expression as pathogenic filamentous fungi undergo forward and reverse morphological transitions.


2008 ◽  
Vol 74 (24) ◽  
pp. 7709-7714 ◽  
Author(s):  
Zhen Shi ◽  
Hans P. Blaschek

ABSTRACT Clostridium beijerinckii is an anaerobic bacterium used for the fermentative production of acetone and butanol. The recent availability of genomic sequence information for C. beijerinckii NCIMB 8052 has allowed for an examination of gene expression during the shift from acidogenesis to solventogenesis over the time course of a batch fermentation using a ca. 500-gene set DNA microarray. The microarray was constructed using a collection of genes which are orthologs of members of gene families previously found to be important to the physiology of C. acetobutylicum ATCC 824. Similar to the onset of solventogenesis in C. acetobutylicum 824, the onset of solventogenesis in C. beijerinckii 8052 was concurrent with the initiation of sporulation. However, forespores and endospores developed more rapidly in C. beijerinckii 8052 than in C. acetobutylicum 824, consistent with the accelerated expression of the sigE- and sigG-regulated genes in C. beijerinckii 8052. The comparison of gene expression patterns and morphological changes in C. beijerinckii 8052 and the hyper-butanol-producing C. beijerinckii strain BA101 indicated that BA101 was less efficient in sporulation and phosphotransferase system-mediated sugar transport than 8052 but that it exhibited elevated expression of several primary metabolic genes and chemotaxis/motility genes.


The Analyst ◽  
2018 ◽  
Vol 143 (11) ◽  
pp. 2520-2530 ◽  
Author(s):  
Margarita Smolina ◽  
Erik Goormaghtigh

Gene expression patterns and FTIR spectral data are strongly correlated. Both identified the genotypes and phenotypes of breast cancer cell lines.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Maricica Pacurari ◽  
Paul B. Tchounwou

MicroRNAs are endogenous regulators of gene expression either by inhibiting translation or protein degradation. Recent studies indicate that microRNAs play a role in cardiovascular disease and renin-angiotensin-aldosterone system- (RAAS-) mediated cardiovascular inflammation, either as mediators or being targeted by RAAS pharmacological inhibitors. The exact role(s) of microRNAs in RAAS-mediated cardiovascular inflammation and remodeling is/are still in early stage of investigation. However, few microRNAs have been shown to play a role in RAAS signaling, particularly miR-155, miR-146a/b, miR-132/122, and miR-483-3p. Identification of specific microRNAs and their targets and elucidating microRNA-regulated mechanisms associated RAS-mediated cardiovascular inflammation and remodeling might lead to the development of novel pharmacological strategies to target RAAS-mediated vascular pathologies. This paper reviews microRNAs role in inflammatory factors mediating cardiovascular inflammation and RAAS genes and the effect of RAAS pharmacological inhibition on microRNAs and the resolution of RAAS-mediated cardiovascular inflammation and remodeling. Also, this paper discusses the advances on microRNAs-based therapeutic approaches that may be important in targeting RAAS signaling.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuan Lu ◽  
Mikki Boswell ◽  
William Boswell ◽  
Raquel Ybanez Salinas ◽  
Markita Savage ◽  
...  

Abstract Background Studying functional divergences between paralogs that originated from genome duplication is a significant topic in investigating molecular evolution. Genes that exhibit basal level cyclic expression patterns including circadian and light responsive genes are important physiological regulators. Temporal shifts in basal gene expression patterns are important factors to be considered when studying genetic functions. However, adequate efforts have not been applied to studying basal gene expression variation on a global scale to establish transcriptional activity baselines for each organ. Furthermore, the investigation of cyclic expression pattern comparisons between genome duplication created paralogs, and potential functional divergence between them has been neglected. To address these questions, we utilized a teleost fish species, Xiphophorus maculatus, and profiled gene expression within 9 organs at 3-h intervals throughout a 24-h diurnal period. Results Our results showed 1.3–21.9% of genes in different organs exhibited cyclic expression patterns, with eye showing the highest fraction of cycling genes while gonads yielded the lowest. A majority of the duplicated gene pairs exhibited divergences in their basal level expression patterns wherein only one paralog exhibited an oscillating expression pattern, or both paralogs exhibit oscillating expression patterns, but each gene duplicate showed a different peak expression time, and/or in different organs. Conclusions These observations suggest cyclic genes experienced significant sub-, neo-, or non-functionalization following the teleost genome duplication event. In addition, we developed a customized, web-accessible, gene expression browser to facilitate data mining and data visualization for the scientific community.


2004 ◽  
Vol 17 (2) ◽  
pp. 150-156 ◽  
Author(s):  
Laszlo T. Vaszar ◽  
Toshihiko Nishimura ◽  
John D. Storey ◽  
Guohua Zhao ◽  
Daoming Qiu ◽  
...  

Pneumonectomized rats injected with the alkaloid toxin, monocrotaline, develop progressive neointimal pulmonary vascular obliteration and pulmonary hypertension resulting in right ventricular failure and death. The antiproliferative immunosuppressant, triptolide, attenuates neointimal formation and pulmonary hypertension in this disease model (Faul JL, Nishimura T, Berry GJ, Benson GV, Pearl RG, and Kao PN. Am J Respir Crit Care Med 162: 2252–2258, 2000). Pneumonectomized rats, injected with monocrotaline on day 7, were killed at days 14, 21, 28, and 35 for measurements of physiology and gene expression patterns. These data were compared with pneumonectomized, monocrotaline-injected animals that received triptolide from day 5 to day 35. The hypothesis was tested that a group of functionally related genes would be significantly coexpressed during the development of disease and downregulated in response to treatment. Transcriptional analysis using total lung RNA was performed on replicate animals for each experimental time point with exploratory data analysis followed by statistical significance analysis. Marked, statistically significant increases in proteases (particularly derived from mast cells) were noted that parallel the development of vascular obliteration and pulmonary hypertension. Mast-cell-derived proteases may play a role in regulating the development of neointimal pulmonary vascular occlusion and pulmonary hypertension in response to injury.


Sign in / Sign up

Export Citation Format

Share Document