scholarly journals Hydrodynamic characteristics of marine composite propeller blade using a numerical approach

Author(s):  
M L P Kishore ◽  
Vijay K Singh ◽  
R K Behra ◽  
Chandra S Saran ◽  
Manikant Paswan ◽  
...  

<p>The aim of the present research work is to investigate the hydrodynamic characteristics (pressure distribution, rotational speed, thrust and torque) of the conventional B-series composite propeller blade. The open water efficiency for the scaled model of composite propeller blade is computed using computational fluid dynamics (CFD) fluent simulation tool. The obtained numerical results show that the propeller will operate at optimum efficiency for the given speed condition and perform with reduced efficiency at other operational speeds. The computed responses are also validated with the standard B-series data which verifies the accuracy and robustness of the present numerical approach in analyzing the performance characteristics of propellers. The deviation in solution ranges from 5 to 15% in the case of thrust, 10-20% in case of torque. Pressure estimation is usually quite accurate with a 5-8% variation. The tabular data of pressure distribution over the propeller blade may be used for further structural analysis</p>

Author(s):  
Mohammed Islam ◽  
Fatima Jahra ◽  
Ron Ryan ◽  
Lee Hedd

State of the art CFD capabilities has enabled the accurate prediction of forces and moments on the propeller as well as on the pod-strut body due to small to moderate azimuthing angles. The capability of CFD to predict the hydrodynamics at extreme azimuthing angles is yet to be demonstrated. The aim of this research is to develop a simulation capability to capture most of the dynamics of podded propulsion systems in regular to extreme operating conditions. The numerical methodologies to evaluate the hydrodynamic characteristics of podded propulsors in puller configurations in extremely oblique inflow and highly loaded condition in open water and the associated results are presented in this paper. A numerical study is carried out to predict the hydrodynamic forces of a podded propulsor unit in various extreme static azimuthing conditions. An unsteady Reynolds-Averaged Navier Stokes (RANS) solver is used to predict the propulsive performance of the podded propulsor system in puller configuration using both steady and unsteady state solutions. To obtain insight into the reliability and accuracy of the results, grid dependency studies are conducted for a podded propulsor in straight-ahead condition. RANS solver simulation technique is first validated against measurements of a puller podded propulsor in straight ahead condition for multiple loading scenarios. The propeller thrust and torque as well as the forces and moments of the pod unit in the three coordinate directions in straight-ahead condition and at static azimuthing angles in the range of −180° to 180° at advance coefficient of 0.20 are then compared with that of the measurements. Additionally, the velocity and pressure distribution on and around the pod-strut-propeller bodies are presented as derived from the RANS predictions. Analysis demonstrates that the RANS solver can predict the performance coefficients of the podded propulsor in extreme azimuthing and in the highly loaded conditions within the same level of accuracy of the same order of magnitude of the experimental results.


Author(s):  
Reza Shamsi ◽  
Hassan Ghassemi

This paper investigates the numerical modeling of turbulent flow and hydrodynamic analysis of podded propeller in open water and azimuthing conditions. The RANS (Reynolds-Averaged Navier Stokes) based solver is used in order to study the variations of hydrodynamic characteristics of podded propeller at various angles. The variations of thrust and torque coefficients as functions of the advance coefficient are obtained at various yaw angles. Turbulent flow around the propeller and pod are presented. At first, the propeller is analyzed in open water condition in absence of pod and strut. Next flow around pod and strut are simulated without effect of propellers. Finally, the whole unit is studied in zero yaw angle and azimuthing condition. These investigations are performed for two podded propulsor configurations: puller and pusher. Total forces on the unit in each direction and propeller torque are computed for a range of advance coefficients from 0.2 to 1. Yaw angle of pod are modified from +15° to −15° by increments of 5°. Computational results are examined against with available experimental data. Characteristic parameters including torque and thrust of propeller, axial force, and side force of unit are presented as functions of advance coefficient and yaw angle. The performance curves of the propeller obtained by numerical method are compared and verified by the experimental results. The results show that the propeller thrust, torque, and podded unit forces and moments in azimuthing condition depend on propeller advance coefficient and yaw angle.


Author(s):  
Adrian Lungu

Abstract The paper proposes a series of numerical investigations performed to test and demonstrate the capabilities of a Reynolds-averaged Navier–Stokes equation (RANSE) solver in the area of complex ship flow simulations. The focus is on a complete numerical model for hull, propeller, and rudder that can account for the mutual interaction between these components. The paper presents the results of a complex investigation of the flow computations around the hull model of the 3600 TEU MOERI containership (KCS hereafter). The resistance for the hull equipped with a rudder, the propeller open-water (POW hereafter) computations, as well as the self-propulsion simulation are presented. Comparisons with the experimental data provided at the Tokyo 2015 Workshop on Computational Fluid Dynamics (CFD) in Ship Hydrodynamics are given to validate the numerical approach in terms of the total and wave resistance coefficients, sinkage and trim, thrust and torque coefficients, propeller efficiency, and local flow features. Verification and validation based on the grid convergence tests are performed for each computational case. Discussions on the efficiency of the turbulence models used in the computations as well as on the main flow features are provided aimed at clarifying the complex structure of the flow around the ship stern.


2014 ◽  
Vol 908 ◽  
pp. 249-255
Author(s):  
Chao Li ◽  
Zhi Xin Chen

With the 42m trawler as object, an ordinary propeller and a ducted propeller are designed and their open water hydrodynamic performance are simulated by using CFD software. The computed results and experimental results of ducted propeller are in good agreement, which verified the reliability of numerical calculation. Then the computed results of ordinary propeller and ducted propeller are compared with each other, it is found that the thrust and torque of ducted propeller is bigger than ordinary propeller in trawling. This article also discusses the pressure distribution of their blade and the reason why ducted propeller has a better hydrodynamic performance is studied.


2015 ◽  
Author(s):  
Mohammed Islam ◽  
Fatima Jahra ◽  
Michael Doucet

Mesh and domain optimization strategies for a RANS solver to accurately estimate the open water propulsive characteristics of fixed pitch propellers are proposed based on examining the effect of different mesh and computation domain parameters. The optimized mesh and domain size parameters were selected using Design of Experiments (DoE) methods enabling simulations to be carried out in a limited memory environment, and in a timely manner; without compromising the accuracy of results. A Reynolds-Averaged Navier Stokes solver is used to predict the propulsive performance of a fixed pitch propeller. The predicted thrust and torque for the propeller were compared to the corresponding measurements. A total of six meshing parameters were selected that could affect the computational results of propeller open water performance. A two-level fractional factorial design was used to screen out parameters that do not significantly contribute to explaining the dependent parameters: namely simulation time, propeller thrust and propeller torque. A total of 32 simulations were carried out only to find out that the selected six meshing parameters were significant in defining the response parameters. Optimum values of each of the input parameters were obtained for the DOE technique and additional simulations were run with those parameters. The simulation results were validated using open water experimental results of the same propeller. It was found that with the optimized meshing arrangement, the propeller opens simulation time was reduced by at least a factor of 6 as compared to the generally popular meshing arrangement. Also, the accuracy of propulsive characteristics was improved by up to 50% as compared to published simulation results. The methodologies presented in this paper can be similarly applied to other simulations such as calm water ship resistance, ship propulsion to systematically derive the optimized meshing arrangement for simulations with minimal simulation time and maximum accuracy. This investigation was carried out using STAR-CCM+, a commercial CFD package; however the findings can be applied to any RANS solver.


1989 ◽  
Vol 26 (03) ◽  
pp. 192-201 ◽  
Author(s):  
Neil Bose ◽  
Peter S. K. Lai

Open-water experiments were done on a model of a cycloidal-type propeller with a trochoidal blade motion. This propeller had three blades with an aspect ratio of 10. These experiments included the measurement of thrust and torque of the propeller over a range of advance ratios. Tests were done for forward and reverse operation, and at zero speed (the bollard pull condition). Results from these tests are presented and compared with: a multiple stream-tube theoretical prediction of the performance of the propeller; and a prediction of the performance of a single blade of the propeller, oscillating in heave and pitch, using unsteady small-amplitude hydrofoil theory with corrections for finite amplitude motion, finite span, and frictional drag. At present, neither of these theories gives a completely accurate prediction of propeller performance over the whole range of advance ratios, but a combination of these approaches, with an allowance for dynamic stall of the blades, should lead to a reliable simple theory for overall performance prediction. Application of a propeller of this type to a small ship is discussed. The aim of the design is to produce a lightly loaded propeller with a high efficiency of propulsion.


Author(s):  
Yipan Deng ◽  
Yinshui Liu ◽  
Fan Li ◽  
Pengyun Tian ◽  
Na Miao

High pressure oil-free miniature air compressor has an irreplaceable role in some high demand areas such as cooling, scuba diving and pneumatic catapult due to its remarkable advantages such as compacted size, lightened weight and clean output gas. As the important sealing component in the high pressure oil-free miniature air compressor, piston rings hold the properties such as tiny diameter (less than 10mm), high sealing pressure (up to 410 bar) and high surrounding temperature (up to 500K), which make them distinctive from conventional piston rings. A mathematical model was established to simulate the pressure distribution of the compressor chamber, as well as the gap between the sealing rings. Sensitive parameters were considered to investigate their effects on the sealing performance such as the number and the cut size of the piston rings, the suction and discharge pressure and the rotary speed. The mathematical model was verified by comparing to published experimental research work. These work help to reveal the severe non-uniformity of the pressure distribution of different chambers, which were suggested be the primary cause of the premature failure of the sealing rings, thus improving the sealing performance and the service life of the air compressor.


Author(s):  
Adrian Lungu

The paper proposes a series of numerical investigations performed to test and demonstrate the capabilities of a RANS solver in the area of complex ship flow simulations. Focus is on a complete numerical model for hull, propeller and rudder that can account for the mutual interaction between these components. The paper presents the results of a complex investigation of the flow computations around the hull model of the 3600 TEU MOERI containership (KCS hereafter). The resistance for the hull equipped with rudder, the POW computations as well as the self-propulsion simulation are presented. Comparisons with the experimental data provided at the Tokyo 2015 Workshop on CFD in Ship Hydrodynamics are given to validate the numerical approach in terms of the total and wave resistance coefficients, sinkage and trim, thrust and torque coefficients, propeller efficiency and local flow features. Verification and validation based on the grid convergence tests are performed for each computational case. Discussions on the efficiency of the turbulence models used in the computations as well as on the main flow features are provided aimed at clarifying the complex structure of the flow around the stern.


Author(s):  
M F Islam ◽  
F Jahra

This paper presents the outcome of a numerical simulation based research program to evaluate the propulsive characteristics of puller and pusher podded propulsors in a straight course and at static azimuthing conditions while operating in open water. Methodologies to predict the propeller thrust and torque, and pod forces and moments in three dimensions using a Reynolds-Averaged Navier Stokes (RANS) solver at multiple azimuthing conditions and pod configurations are presented. To obtain insight into the reliability and accuracy of the results, grid and time step dependency studies are conducted for a podded propulsor in straight-ahead condition. The simulation techniques and results are first validated against measurements of a bare propeller and a podded propulsor in straight ahead condition for multiple loading scenarios and in both puller and pusher configurations. Next, simulations were carried out to model the podded propulsors in the two configurations at multiple loading conditions and at various azimuthing angles from +30° to –30° in 15° increments. The majority of the simulations are carried out using both steady state and unsteady state conditions, primarily to evaluate the effect of setup conditions on the computation time and prediction accuracy. The predicted performance characteristics of the pod unit using the unsteady RANS method were within 1% to 5% of the corresponding experimental measurements for all the loading conditions, azimuthing angles and pod configurations studied. The non-linear behaviour of the performance coefficients of the pod unit are well captured at various loading and azimuthing conditions in the predicted results. This study demonstrates that the RANS solver, with proper meshing arrangement, boundary conditions and setup techniques can predict the performance characteristics of the podded propulsor in multiple azimuthing angles, pod configurations and in the various loading conditions with a same level of accuracy as experimental results. Additionally, the velocity and pressure distributions on and around the pod-strut- propeller bodies are discussed as derived from the RANS predictions.


2019 ◽  
Vol 188 ◽  
pp. 106284 ◽  
Author(s):  
L.Y. Ye ◽  
C.Y. Guo ◽  
C. Wang ◽  
C.H. Wang

Sign in / Sign up

Export Citation Format

Share Document