scholarly journals Parametric estimation in photovoltaic modules using the crow search algorithm

Author(s):  
Oscar Danilo Montoya ◽  
Carlos Alberto Ramírez-Vanegas ◽  
Luis Fernando Grisales-Noreña

<p>The problem of parametric estimation in photovoltaic (PV) modules considering manufacturer information is addressed in this research from the perspective of combinatorial optimization. With the data sheet provided by the PV manufacturer, a non-linear non-convex optimization problem is formulated that contains information regarding maximum power, open-circuit, and short-circuit points. To estimate the three parameters of the PV model (i.e., the ideality diode factor (a) and the parallel and series resistances (R<sub>p</sub> and R<sub>s</sub>)), the crow search algorithm (CSA) is employed, which is a metaheuristic optimization technique inspired by the behavior of the crows searching food deposits. The CSA allows the exploration and exploitation of the solution space through a simple evolution rule derived from the classical PSO method. Numerical simulations reveal the effectiveness and robustness of the CSA to estimate these parameters with objective function values lower than 1 × 10<sup>−28</sup> and processing times less than 2 s. All the numerical simulations were developed in MATLAB 2020a and compared with the sine-cosine and vortex search algorithms recently reported in the literature.</p>

2011 ◽  
Vol 20 (03) ◽  
pp. 457-478 ◽  
Author(s):  
KASHIF ZAFAR ◽  
RAUF BAIG ◽  
NABEEL BUKHARI ◽  
ZAHID HALIM

This research presents an optimization technique for route planning using simulated ant agents for dynamic online route planning and optimization of the route. It addresses the issues involved during route planning in dynamic and unknown environments cluttered with obstacles and objects. A simulated ant agent system (SAAS) is proposed using modified ant colony optimization algorithm for dealing with online route planning. It is compared with evolutionary technique on randomly generated environments, obstacle ratio, grid sizes, and complex environments. The evolutionary technique performs well in simple and less cluttered environments while its performance degrades with large and complex environments. The SAAS generates and optimizes routes in complex and large environments with constraints. The traditional route optimization techniques focus on good solutions only and do not exploit the solution space completely. The SAAS is shown to be an efficient technique for providing safe, short, and feasible routes under dynamic constraints and its efficiency has been tested in a mine field simulation with different environment configurations and is capable of tracking the moving goal and performs equally well as compared to moving target search algorithm.


Computers ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 9
Author(s):  
David Gilberto Gracia-Velásquez ◽  
Andrés Steven Morales-Rodríguez ◽  
Oscar Danilo Montoya

The problem of the electrical characterization of single-phase transformers is addressed in this research through the application of the crow search algorithm (CSA). A nonlinear programming model to determine the series and parallel impedances of the transformer is formulated using the mean square error (MSE) between the voltages and currents measured and calculated as the objective function. The CSA is selected as a solution technique since it is efficient in dealing with complex nonlinear programming models using penalty factors to explore and exploit the solution space with minimum computational effort. Numerical results in three single-phase transformers with nominal sizes of 20 kVA, 45 kVA, 112.5 kVA, and 167 kVA demonstrate the efficiency of the proposed approach to define the transformer parameters when compared with the large-scale nonlinear solver fmincon in the MATLAB programming environment. Regarding the final objective function value, the CSA reaches objective functions lower than 2.75×10−11 for all the simulation cases, which confirms their effectiveness in minimizing the MSE between real (measured) and expected (calculated) voltage and current variables in the transformer.


Author(s):  
Otwin Breitenstein

Abstract The electronic properties of solar cells, particularly multicrystalline silicon-based ones, are distributed spatially inhomogeneous, where regions of poor quality may degrade the performance of the whole cell. These inhomogeneities mostly affect the dark current-voltage (I-V) characteristic, which decisively affects the efficiency. Since the grid distributes the local voltage homogeneously across the cell and leads to lateral balancing currents, local light beam-induced current methods alone cannot be used to image local cell efficiency parameters. Lock-in thermography (LIT) is the method of choice for imaging inhomogeneities of the dark I-V characteristic. This contribution introduces a novel method for evaluating a number of LIT images taken at different applied biases. By pixel-wise fitting the data to a two diode model and taking into account local series resistance and short circuit current density data, realistically simulated images of the other cell efficiency parameters (open circuit voltage, fill factor, and efficiency) are obtained. Moreover, simulated local and global dark and illuminated I-V characteristics are obtained, also for various illumination intensities. These local efficiency data are expectation values, which would hold if a homogeneous solar cell had the properties of the selected region of the inhomogeneous cell. Alternatively, also local efficiency data holding for the cell working at its own maximum power point may be generated. The amount of degradation of different cell efficiency parameters in some local defect positions is an indication how dangerous these defects are for degrading this parameter of the whole cell. The method allows to virtually 'cut out' certain defects for checking their influence on the global characteristics. Thus, by applying this method, a detailed local efficiency analysis of locally inhomogeneous solar cells is possible. It can be reliably predicted how a cell would improve if certain defects could be avoided. This method is implemented in a software code, which is available.


1987 ◽  
Vol 253 (6) ◽  
pp. R917-R921
Author(s):  
S. Sabatini ◽  
N. A. Kurtzman

Unidirectional 45Ca fluxes were measured in the turtle bladder under open-circuit and short-circuit conditions. In the open-circuited state net calcium flux (JnetCa) was secretory (serosa to mucosa) and was 388.3 +/- 84.5 pmol.mg-1.h-1 (n = 20, P less than 0.001). Ouabain (5 X 10(-4) M) reversed JnetCa to an absorptive flux (serosal minus mucosal flux = -195.8 +/- 41.3 pmol.mg-1.h-1; n = 20, P less than 0.001). Amiloride (1 X 10(-5) M) reduced both fluxes such that JnetCa was not significantly different from zero. Removal of mucosal sodium caused net calcium absorption; removal of serosal sodium caused calcium secretion. When bladders were short circuited, JnetCa decreased to approximately one-third of control value but remained secretory (138.4 +/- 54.3 pmol.mg-1.h-1; n = 9, P less than 0.025). When ouabain was added under short-circuit conditions, JnetCa was similar in magnitude and direction to ouabain under open-circuited conditions (i.e., absorptive). Tissue 45Ca content was approximately equal to 30-fold lower when the isotope was placed in the mucosal bath, suggesting that the apical membrane is the resistance barrier to calcium transport. The results obtained in this study are best explained by postulating a Ca2+-ATPase on the serosa of the turtle bladder epithelium and a sodium-calcium antiporter on the mucosa. In this model, the energy for calcium movement would be supplied, in large part, by the Na+-K+-ATPase. By increasing cell sodium, ouabain would decrease the activity of the mucosal sodium-calcium exchanger (or reverse it), uncovering active calcium transport across the serosa.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1023
Author(s):  
Arigela Satya Veerendra ◽  
Akeel A. Shah ◽  
Mohd Rusllim Mohamed ◽  
Chavali Punya Sekhar ◽  
Puiki Leung

The multilevel inverter-based drive system is greatly affected by several faults occurring on switching elements. A faulty switch in the inverter can potentially lead to more losses, extensive downtime and reduced reliability. In this paper, a novel fault identification and reconfiguration process is proposed by using discrete wavelet transform and auxiliary switching cells. Here, the discrete wavelet transform exploits a multiresolution analysis with a feature extraction methodology for fault identification and subsequently for reconfiguration. For increasing the reliability, auxiliary switching cells are integrated to replace faulty cells in a proposed reduced-switch 5-level multilevel inverter topology. The novel reconfiguration scheme compensates open circuit and short circuit faults. The complexity of the proposed system is lower relative to existing methods. This proposed technique effectively identifies and classifies faults using the multiresolution analysis. Furthermore, the measured current and voltage values during fault reconfiguration are close to those under healthy conditions. The performance is verified using the MATLAB/Simulink platform and a hardware model.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


2021 ◽  
Vol 11 (5) ◽  
pp. 2175
Author(s):  
Oscar Danilo Montoya ◽  
Walter Gil-González ◽  
Jesus C. Hernández

The problem of reactive power compensation in electric distribution networks is addressed in this research paper from the point of view of the combinatorial optimization using a new discrete-continuous version of the vortex search algorithm (DCVSA). To explore and exploit the solution space, a discrete-continuous codification of the solution vector is proposed, where the discrete part determines the nodes where the distribution static compensator (D-STATCOM) will be installed, and the continuous part of the codification determines the optimal sizes of the D-STATCOMs. The main advantage of such codification is that the mixed-integer nonlinear programming model (MINLP) that represents the problem of optimal placement and sizing of the D-STATCOMs in distribution networks only requires a classical power flow method to evaluate the objective function, which implies that it can be implemented in any programming language. The objective function is the total costs of the grid power losses and the annualized investment costs in D-STATCOMs. In addition, to include the impact of the daily load variations, the active and reactive power demand curves are included in the optimization model. Numerical results in two radial test feeders with 33 and 69 buses demonstrate that the proposed DCVSA can solve the MINLP model with best results when compared with the MINLP solvers available in the GAMS software. All the simulations are implemented in MATLAB software using its programming environment.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 726
Author(s):  
Ray-Hua Horng ◽  
Yu-Cheng Kao ◽  
Apoorva Sood ◽  
Po-Liang Liu ◽  
Wei-Cheng Wang ◽  
...  

In this study, a mechanical stacking technique has been used to bond together the GaInP/GaAs and poly-silicon (Si) solar wafers. A GaInP/GaAs/poly-Si triple-junction solar cell has mechanically stacked using a low-temperature bonding process which involves micro metal In balls on a metal line using a high-optical-transmission spin-coated glue material. Current–voltage measurements of the GaInP/GaAs/poly-Si triple-junction solar cells have carried out at room temperature both in the dark and under 1 sun with 100 mW/cm2 power density using a solar simulator. The GaInP/GaAs/poly-Si triple-junction solar cell has reached an efficiency of 24.5% with an open-circuit voltage of 2.68 V, a short-circuit current density of 12.39 mA/cm2, and a fill-factor of 73.8%. This study demonstrates a great potential for the low-temperature micro-metal-ball mechanical stacking technique to achieve high conversion efficiency for solar cells with three or more junctions.


Author(s):  
Mingqiang Zhong ◽  
Qin Feng ◽  
Changlai Yuan ◽  
Xiao Liu ◽  
Baohua Zhu ◽  
...  

AbstractIn this work, the (1−x)Bi0.5Na0.5TiO3-xBaNi0.5Nb0.5O3 (BNT-BNN; 0.00 ⩽ x ⩽ 0.20) ceramics were prepared via a high-temperature solid-state method. The crystalline structures, photovoltaic effect, and electrical properties of the ceramics were investigated. According to X-ray diffraction, the system shows a single perovskite structure. The samples show the normal ferroelectric loops. With the increase of BNN content, the remnant polarization (Pr) and coercive field (Ec) decrease gradually. The optical band gap of the samples narrows from 3.10 to 2.27 eV. The conductive species of grains and grain boundaries in the ceramics are ascribed to the double ionized oxygen vacancies. The open-circuit voltage (Voc) of ∼15.7 V and short-circuit current (Jsc) of ∼1450 nA/cm2 are obtained in the 0.95BNT-0.05BNN ceramic under 1 sun illumination (AM1.5G, 100 mW/cm2). A larger Voc of 23 V and a higher Jsc of 5500 nA/cm2 are achieved at the poling field of 60 kV/cm under the same light conditions. The study shows this system has great application prospects in the photovoltaic field.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2191
Author(s):  
Xiaolan Wang ◽  
Xiaoping Zou ◽  
Jialin Zhu ◽  
Chunqian Zhang ◽  
Jin Cheng ◽  
...  

It is crucial to find a good material as a hole transport layer (HTL) to improve the performance of perovskite solar cells (PSCs), devices with an inverted structure. Polyethylene dioxythiophene-poly (styrene sulfonate) (PEDOT:PSS) and inorganic nickel oxide (NiOx) have become hotspots in the study of hole transport materials in PSCs on account of their excellent properties. In our research, NiOx and PEDOT: PSS, two kinds of hole transport materials, were prepared and compared to study the impact of the bottom layer on the light absorption and morphology of perovskite layer. By the way, some experimental parameters are simulated by wx Analysis of Microelectronic and Photonic Structures (wxAMPS). In addition, thin interfacial layers with deep capture levels and high capture cross sections were inserted to simulate the degradation of the interface between light absorption layer and PEDOT:PSS. This work realizes the combination of experiment and simulation. Exploring the mechanism of the influence of functional layer parameters plays a vital part in the performance of devices by establishing the system design. It can be found that the perovskite film growing on NiOx has a stronger light absorption capacity, which makes the best open-circuit voltage of 0.98 V, short-circuit current density of 24.55 mA/cm2, and power conversion efficiency of 20.01%.


Sign in / Sign up

Export Citation Format

Share Document