scholarly journals Frequency response analysis under faults in weak power systems

Author(s):  
Marino Godoy Arcia ◽  
Zaid Garcia Sanchez ◽  
Hernan Hernandez Herrera ◽  
José Antonio Gonzalez Cueto Cruz ◽  
Jorge Iván Silva Ortega ◽  
...  

The renewable energy sources (RESs) projects are solutions with environmental benefits that are changing the traditional power system operation and concept. Transient stability analysis has opened new research trends to guarantee a secure operation high penetration. Problems such as frequency fluctuations, decoupling between generator angular speed, network frequency fluctuation and kinetic energy storing absence are the main non-conventional RESs penetration in power systems. This paper analyzes short-circuit influence on frequency response, focusing on weak distribution networks and isolated, to demonstrate relevance in frequency stability. A study case considered a generation outage and a load input to analyze frequency response. The paper compares frequency response during a generation outage with a short-circuit occurrence. In addition, modular value and angle generator terminal voltage affectation by electric arc and network ratio R⁄X, failure type influence in power delivered behavior, considering fault location, arc resistance and load. The arc resistance is defined as an added resistance that appears during failure and influences voltage modulus and angle value results showing that intermittent non-conventional RES participation can lead to frequency fluctuations. Results showed that arc resistance, type of failure, location and loadability determine the influence of frequency response factors in weak power systems.

Electricity ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 62-86
Author(s):  
Nikhil Kalloe ◽  
Jorrit Bos ◽  
Jose Rueda Torres ◽  
Mart van der Meijden ◽  
Peter Palensky

The last decade has seen an immense growth in renewable energy sources such as solar photovoltaic (PV) plants due to environmental concerns. Due to this rapid growth, solar PV plants are starting to have a larger influence on power system stability and thus their dynamic behavior cannot be ignored in stability studies. The lack of well-established models and parameter sets is the primary reason solar PV plants are not modeled with dynamic characteristics. This paper presents a method to define a standard parameter set for representing large-scale and aggregated solar PV plants in stability studies from the perspective of the transmission system operator (TSO). The method takes into account primarily the conditions provided in the grid connection requirements; for illustrative purposes, the connection requirements of the Netherlands are used. Additionally, a relationship defined as short-circuit current (SCC) PV ratio is proposed to estimate the effect of solar PV plants on transient stability. To illustrate the workings of the proposed ratio, the transmission network of the TenneT TSO B.V. in the Netherlands is used. The analysis demonstrated that high values of SCC PV ratio are an indicator that solar PV plants affect the transient stability while low values of SCC PV ratio showed that solar PV plants have minimal effect on the transient stability. Additionally, methods to improve the transient stability are provided which include limiting the operation regions of critical generators, increasing short-circuit ratio by adding a synchronous condenser or static compensator (STATCOM) and decreasing the reactance between the critical synchronous generator and faulted bus.


2021 ◽  
Vol 54 (1) ◽  
pp. 147-154
Author(s):  
Issam Griche ◽  
Sabir Messalti ◽  
Kamel Saoudi

The uncertainty of wind power brings great challenges to large-scale wind power integration. The conventional integration of wind power is difficult to adapt the demand of power grid planning and operation. This paper proposes an instantaneous power control strategy for voltage improvement in power networks using wind turbine improving the dynamical response of power systems performances (voltage and transient stability) after fault. In which the proposed control algorithm based on a new advanced control strategy to control the injected wind power into power system. The efficiency of developed control strategy has been tested using IEEE 9 Bus. Simulation results have showed that the proposed method perform better to preserve optimal performances over wide range of disturbances for both considered scenarios studied short circuit and variable loads.


Author(s):  
Kim Hung Le ◽  
Ngoc Thien Nam Tran ◽  
Viet Tri Nguyen ◽  
The Khanh Truong ◽  
Minh Quan Duong

The increasing demand for electricity along with the development of distributed generators showed that improving transmission efficiency and reliability is an indispensable requirement in the operation of the power system. Advanced technologies need to be applied to modern power systems for purposes of conveying large power flows, mitigating the risk of faults. High-voltage direct current (HVDC) transmission is now considered an effective solution for investment in large-length power lines, replacing the conventional high-voltage alternative current (HVAC) transmission system, especially in period of increasing generation capacity due to the penetration of renewable energy sources. This study assesses the performance of the HVDC system on an actual power grid based on planning and improvement demands. The calculation results of power flows, power losses and short-circuit faults were investigated using ETAP software X  


2015 ◽  
Vol 16 (2) ◽  
pp. 117-129 ◽  
Author(s):  
M. S. Rahman ◽  
M. A. Mahmud ◽  
H. R. Pota ◽  
M. J. Hossain ◽  
T. F. Orchi

Abstract This paper presents a new distributed agent-based scheme to enhance the transient stability of power systems by maintaining phase angle cohesiveness of interconnected generators through proper relay coordination with critical clearing time (CCT) information. In this distributed multi-agent infrastructure, intelligent agents represent various physical device models to provide dynamic information and energy flow among different physical processes of power systems. The agents can communicate with each other in a distributed manner with a final aim to control circuit breakers (CBs) with CCT information as this is the key issue for maintaining and enhancing the transient stability of power systems. The performance of the proposed scheme is evaluated on a standard IEEE 39-bus New England benchmark system under different large disturbances such as three-phase short-circuit faults and changes in loads within the systems. From the simulation results, it is found that the proposed scheme significantly enhances the transient stability of power systems as compared to a conventional scheme of static CB operation.


2019 ◽  
Vol 139 ◽  
pp. 01049
Author(s):  
Sergey Solodyankin ◽  
Andrey Pazderin

The article is devoted to the development of the mathematical models of modern devices of flexible alternating current transmission systems (FACTS) when calculating the modes and stability of power systems and to the analysis of influence of the specified devices on transient stability of the generators. The considered scheme contains the generators with the gas turbine drive that have electromechanical parameters providing lower level of transient stability compared to units of higher power rating, which in some cases requires implementation of measures for transient stability enhancement. As examples of FACTS the following devices have been considered: compensating device based on voltage- sourced converter (STATCOM), static synchronous series compensator (SSSC) and the unified power flow controller (UPFC). The known examples of mathematical models of FACTS devices vary in complexity. For a preliminary assessment of the effectiveness of the FACTS devices, it is proposed to use simplified models that adequately reflect their impact on transients. The use of models made it possible to establish a positive impact of the devices on transient stability of generating equipment in case of short circuits in the electric network. The important conclusion here is that the use of the UPFC device based on two converters (with a corresponding increase in cost) compared to one converter device (STATCOM or SSSC) slightly increases the level of transient stability and the limit time of short circuit disconnection. The proposed method of simulating the FACTS devices is suitable for numerical calculations of transient processes in electric power systems, in particular, to estimate the impact on the transient stability level of the parallel operation of power plants in case of disturbances.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
A. Elsherif ◽  
T. Fetouh ◽  
H. Shaaban

In recent years a multitude of events have created a new environment for the electric power infrastructure. The presence of small-scale generation near load spots is becoming common especially with the advent of renewable energy sources such as wind power energy. This type of generation is known as distributed generation (DG). The expansion of the distributed generators- (DGs-) based wind energy raises constraints on the distribution networks operation and power quality issues: voltage sag, voltage swell, voltage interruption, harmonic contents, flickering, frequency deviation, unbalance, and so forth. Consequently, the public distribution network conception and connection studies evolve in order to keep the distribution system operating in optimal conditions. In this paper, a comprehensive power quality investigation of a distribution system with embedded wind turbines has been carried out. This investigation is carried out in a comparison aspect between the conventional synchronous generators, as DGs are widely in use at present, and the different wind turbines technologies, which represent the foresightedness of the DGs. The obtained results are discussed with the IEC 61400-21 standard for testing and assessing power quality characteristics of grid-connected wind energy and the IEEE 1547-2003 standard for interconnecting distributed resources with electric power systems.


Sign in / Sign up

Export Citation Format

Share Document