scholarly journals Performance analysis of multi-level high voltage direct current converter

Author(s):  
Rasha Ghilman Shahin ◽  
Hussein Diab Al-Majali

<p class="Abstract">The conventional three-phase alternating current (AC) to direct current (DC) converter can be modified using two isolated-gate bipolar transistor (IGBT) as by-pass switches connected to tapping points on the secondary side of the transformer. This scheme yields a reduction in both harmonic contents and reactive volt-ampere absorption. This modified converter possibly eliminates the need for an on-load tap-changer on the converter transformer. The modified AC/DC converter is fully analyzed and implemented under balanced conditions using MATLAB-Simulink. The expressions of the output DC voltage are derived for different cases. The supply current harmonic contents, the reactive power absorption and the power factor have been compared for three schemes; the conventional bridge, the modified bridge using one by-pass IGBT valve and the modified bridge with two by-pass IGBT valves. </p>

Author(s):  
Mogaligunta Sankaraiah ◽  
Sanna Suresh Reddy ◽  
M Vijaya Kumar

<p>Wind is available with free of cost anywhere in the world, this wind can be used for power generation due to many advantages. This attracts the researchers to work on wind power plants. The presence of wind power plants on distribution system causes major influence on voltage controlled devices (VCDs) in terms of life of the devices. Therefore, this paper proposes grey wolf optimization method (GWO) together with forecasted load one day in advance. VCDs are on load tap changer (ULTC) and capacitors (CS), there are two main objectives first one is curtail of distribution network (DN) loss and second one is curtailing of ULTC and CS switching’s. Objectives are achieved by controlling the reactive power of DFIG in coordination with VCDs. The proposed method is planned and applied in Matlab/Simulink on 10KV practical system with DFIG located at different locations. To validate the efficacy of GWO, results are compared with conventional and dynamic programming methods without profane grid circumstances.</p>


2016 ◽  
Vol 10 (6) ◽  
pp. 488-497 ◽  
Author(s):  
Yaqing Liu ◽  
Dandan Zhang ◽  
Zhenbiao Li ◽  
Qinqing Huang ◽  
Bin Li ◽  
...  

2015 ◽  
Vol 16 (4) ◽  
pp. 385-395 ◽  
Author(s):  
Neelakanteshwar Rao Battu ◽  
Nilanjan Senroy ◽  
A. R. Abhyankar

Abstract Installation of a wind power distributed generator in a distribution system alters the reactive power drawn by the system. This affects the load bus voltages. Any deviation in load bus voltages from their limits is sensed by an on load tap changer of a transformer and it responds to maintain the bus voltages within their limits. The reactive power requirements of a wind generator vary due to the intermittent behaviour of wind, which will in turn vary the bus voltages. This has an affect on number of tap changings of a transformer. Frequent tap changing of a transformer increases wear and tear of it and ultimately reduces the life of it. A mathematical model is developed to analyze the voltage sensitivity at a load bus to the tap change of a transformer under different scenarios and conditions in the distribution system. A possible solution to reduce the number of tap changings is presented in this paper.


2020 ◽  
Author(s):  
◽  
Sindisiwe Cindy Malanda

A multiterminal HVDC system includes the connection of different HVDC terminals to a common grid. Most of the MTDC networks are realized in voltage source converter (VSC) high voltage direct current (HVDC). Over long distances, HVDC transmission is preferred to high voltage direct current (HVAC). Furthermore, HVDC is subjected to minimal harmonics oscillation problems due to the absence of frequency. HVDC enables the interconnection of systems at different frequencies, and the system becomes free of angular stability problems. VSCs employ insulated gate bipolar transistors (IGBTs) switches, and High-frequency pulse width modulation is used to operate the IGBTs in order to achieve high-speed control of active and reactive power. The growth of MTDC networks may require a new type of VSCs topology, which is resilient and efficient to dc and ac network fault. This research investigation focuses on the transient dc-side fault analysis in a two-level Monopolar VSC- Based Multi-Terminal HVDC Scheme consisting of four asynchronous terminals sharing a rated 400kV DC-grid was carried out in PSCAD software. During dc-side fault analysis, a pole-to-ground fault was taken into consideration as it’s more likely to occur, although it is less severe compared to pole-to-pole. The converters are interconnected through 100 km dc cables placed 0.5 gm apart and at a depth of 1.5 m underground. It was observed that during the steady-state analysis, the dc voltage in the grid was maintained at the rated value 400 kV, the currents measured at the converters bus was 0.5 kA, and the current flowing through the cables was 0.25 kA. Under the fault condition, the dc voltage drop needs to be maintained to a closed range to avoid the grid to collapse. The voltage droop technique was incorporated in the dc voltage controller to keep the dc voltage at the narrow range. Depending on the value and nature of ground fault resistance, the fault current magnitude varies, and distance variation along the cable has a significant contribution in the fault current. It is observed that fault close to the converter (5 km’s measured 9 kA) results in high fault currents compared to fault away from the converter (50 km’s measured 7.8 kA). The protection design of the VSC needs to be able to detect whether its ground fault or short circuit since the location of the fault needs to be identified and repaired. Another observation made when the fault is inserted 50 kms away from the converter, meaning the fault is at the center of the two converters, the outcome results in high currents in both converters. The isolation of the fault should be fast and selective as the critical time is very short. The dc circuit breakers are mostly recommended to be used as primary protection; however, different protection techniques need to be incorporated with dc circuit breaker in order to quickly identify, select and reliable isolate the faulted line. Moreover, the protection should be able to isolate the line before the fault reaches the maximum fault current to avoid the damage in the converter components.


Sign in / Sign up

Export Citation Format

Share Document