scholarly journals Review on water quality monitoring technologies

Author(s):  
Josephine Ong Ning Ting ◽  
S. K. Yee

<span>Water quality monitoring is always the prior element to ensure the drinking water is safe to be consumed. A lot of researches have been carried out over the past decades to design and develop a robust and cost-effective water monitoring system. The conventional water monitoring techniques were based on laboratory instruments which is time-consuming and laborious. Furthermore, it is not suitable when the water sampling point is far from the commercial laboratory centres. These limitations were then been solved by the developments of portable testing kits and microwave technique. The microwave techniques such as spectroscopy techniques and microwave sensor approach have improved the water quality monitoring experience which is convenient without sacrificing the measurement accuracy and sensitivity. Its portability enables the on-site measurement at rural areas and thus reduce the transportation and manpower cost. This paper intends to review the water contaminant detection techniques which include standardized drinking water parameter testing and microwave-based in terms of physical, chemical and microbiological parameters. Furthermore, this review also emphasizes the current trend of the water quality testing method in microwave technique. At the end of this paper, a significant advantages and drawbacks of the techniques are summarized, and recommendations are provided for future development in the water quality monitoring.</span>

Author(s):  
Yu.A. Novikova ◽  
I.O. Myasnikov ◽  
A.A. Kovshov ◽  
N.A. Tikhonova ◽  
N.S. Bashketova

Summary. Introduction: Drinking water is one of the most important environmental factors sustaining life and determining human health. The goal of the Russian Federal Clean Water Project is to improve drinking water quality through upgrading of water treatment and supply systems using advanced technologies, including those developed by the military-industrial complex. The most informative and reliable sources of information for assessing drinking water quality are the results of systematic laboratory testing obtained within the framework of socio-hygienic monitoring (SGM) and production control carried out by water supply organizations. The objective of our study was to formulate approaches to organizing quality monitoring programs for centralized cold water supply systems. Materials and methods: We reviewed programs and results of drinking water quality laboratory tests performed by Rospotrebnadzor bodies and institutions within the framework of SGM in 2017–2018. Results: We established that drinking water quality monitoring in the constituent entities of the Russian Federation differs significantly in the number of monitoring points (566 in the Krasnoyarsk Krai vs 10 in Sevastopol) and measured indicators, especially sanitary and chemical ones (53 inorganic and organic substances in the Kemerovo Region vs one indicator in the Amur Region). Discussion: For a more complete and objective assessment of drinking water quality in centralized cold water supply systems, monitoring points should be organized at all stages of water supply with account for the coverage of the maximum number of people supplied with water from a particular network. Thus, the number of points in the distribution network should depend, inter alia, on the size of population served. In urban settlements with up to 10,000 inhabitants, for example, at least 4 points should be organized while in the cities with more than 3,000,000 inhabitants at least 80 points are necessary. We developed minimum mandatory lists of indicators and approaches to selecting priority indices to be monitored at all stages of drinking water supply.


2007 ◽  
pp. 114-126
Author(s):  
Kyle B. Murray ◽  
Cory A. Habulin

This chapter introduces a community facilitation model for e-government. The central tenet of this approach is the empowerment of a segment of the population to act, by providing the tools and information necessary to tackle issues that have been difficult to address with traditional approaches to government. Under this model, government provides an initial spark and then plays a supporting role in the growth of the community. By doing so, the costs of the program are minimized while the impact of the program is maximized. We examine the viability of the model by looking at a case study in water quality monitoring. The case illustrates the power of a government facilitated community of action to address an important problem, and it suggests that such a model can be applied globally and may be relevant to government initiatives beyond water monitoring.


2020 ◽  
Author(s):  
Thanapon Piman ◽  
Chayanis Krittasudthacheew ◽  
Shakthi K. Gunawardanaa ◽  
Sangam Shresthaa

&lt;p&gt;The Chindwin River, a major tributary of the Ayeyarwady River in Myanmar, is approximately 850 km long with a watershed area of 115,300 km&lt;sup&gt;2&lt;/sup&gt;. The Chindwin River is essential for local livelihoods, drinking water, ecosystems, navigation, agriculture, and industries such as logging and mining. Over the past two decades, Myanmar&amp;#8217;s rapid economic development has resulted in drastic changes to socio-economic and ecological conditions in the basin. Water users in the basin reported that there is a rapid extension of gold and jade mining and they observed a noticeable decline in water quality along with increased sedimentation and turbidity. So far, however, Myanmar has not undertaken a comprehensive scientific study in the Chindwin River Basin to assess water quality and sources of water pollution and to effectively address issues of river basin degradation and concerns for public health and safety. This study aims to assess the status of water quality in the Chindwin River and the potential impact of mining activities on the water quality and loading through monitoring program and modeling approach. 17 locations in the upper, middle and lower parts of the Chindwin River Basin were selected for water quality monitoring. These sites are located near Homalin, Kalewa, Kani and Monywa townships where human activities and interventions could affect water quality. Water quality sampling and testing in the Chindwin River was conducted two times per year: in the dry season (May-June) and in the wet season (September-October) during 2015-2017. We monitored 21 parameters including heavy metals such as Lead (Pb), Mercury (Hg), Copper (Cu) and Iron (Fe). The observed values of Mercury in Uru River in the upper Chindwin River Basin which located nearby gold mining sites shown higher than the WHO drinking standard. This area also has high values of turbidity and Total Suspended Solid. The SHETRAN hydrological model, PHREEQC geochemical model and LOADEST model were used to quantify the heavy metal loads in the Uru River. Results from scenario analysis indicate an increase in Arsenic and Mercury load under increment of concentration due to expansions in mining areas. In both baseline and future climate conditions, the Uru downstream area shows the highest load effluent in both Arsenic and Mercury. These heavy metal loads will intensify the declining water quality condition in Chindwin River and can impact negatively on human health who use water for drinking. Therefore, we recommend that water quality monitoring should continue to provide scientific-evidence for decision-makers to manage water quality and mining activities properly.&amp;#160; Water treatment systems for drinking water are required to remove turbidity, Total Suspended Solid, and Mercury from raw water sources. Raising awareness of relevant stakeholders (local people, farmers, private sectors, etc.) is necessary as many people living in the Chindwin River Basin are using water directly from the river and other waterways without proper water treatment.&lt;/p&gt;


2003 ◽  
Vol 48 (10) ◽  
pp. 97-102 ◽  
Author(s):  
T. Lepono ◽  
H.H. Du Preez ◽  
M. Thokoa

Water quality is of prime importance to Rand Water’s core business of ensuring a reliable supply of good quality drinking water to more than 10 million people. Rand Water has, therefore, implemented a water quality monitoring programme of the source water as well as the drinking water produced. The establishment of the Lesotho Highlands Water Transfer scheme necessitated the expansion of the monitoring programme. In 1996, Rand Water and Lesotho Highlands Development Authority (LHDA) signed an agreement to jointly develop an extensive water quality monitoring programme for the Lesotho Highlands Water Project (LHWP). Prior to this agreement, monitoring was mainly undertaken by consultants on behalf of LHDA in the main feeder rivers within the Katse Dam catchment (donor system). On the recipient system (Ash/Liebenbergsvlei), extensive physical and chemical monitoring was undertaken by Rand Water and Department of Water Affairs and Forestry (DWAF). Biological monitoring was however only carried out superficially prior to the release of water. Information gained from carrying out biological and chemical assessments clearly indicates that the water from LHWP has negatively impacted on the biological communities in the recipient system. The importance of detailed before and after biological and physio-chemical monitoring of both donor and recipient systems is emphasised.


2019 ◽  
Vol 8 (4) ◽  
pp. 11801-11805

In the present occasions, because of urbanization and contamination, it has gotten important to screen and assess the nature of water arriving at our homes. Guaranteeing safe inventory of drinking water has become a major test for the cutting edge progress. In this desk work, we present a structure and improvement of a minimal effort framework for continuous checking of the water quality (WQ) in IoT (web of things). The framework comprise of a few sensors are accustomed to guesstimatingsomatic and element limitations of the water. The parameters like temperature, PH, turbidity, conductivity, broke up oxygen of the water can be estimated. The deliberate qualities from the sensors can be prepared by the center controller. The RBPI B+ (RBPI) model can be consumed as a center controller. At last, the instrument facts can be understood on web utilizing distributed computing. Here the information's are handled utilizing AI calculation it sense the water condition if the WQis great it open the entryway divider else it shuts the door divider. This whole procedure happens naturally without human mediation therefore spare an opportunity to contract with the circumstance physically. The uniqueness of our proposed research is to get the water observing framework with high recurrence, high portability, and low controlled.


Author(s):  
IO Myasnikov ◽  
YuA Novikova ◽  
OS Alenteva ◽  
GB Yeremin ◽  
PA Ganichev

Summary. Introduction: In order to conduct a more precise and objective assessment of drinking water quality in the centralized cold water supply systems, it is essential to increase the coverage of population with laboratory control. It is therefore expedient to consider the possibility of using production control data collected within the drinking water quality monitoring system and including them in statistical reporting forms of Rospotrebnadzor for subsequent accounting when assessing the implementation of the Russian Federal Clean Water Project within the National Ecology Project. Our objective was to substantiate requirements for organization of production control of drinking water with considering a further use of its results in assessing drinking water quality. The materials of the research included current regulations and literature data. We applied methods of sanitary and epidemiologic expert examination, assessment and survey as well as methods of systemic and content analysis. Results: To evaluate the supply of the population with high-quality drinking water, it is important to consider not only test results collected within the framework of the federal state sanitary and epidemiologic surveillance but also the results of production control carried out by legal entities and individual entrepreneurs operating centralized cold water supply systems. However, organization of production control and the use of its results is usually associated with such problems as the choice of the most representative sampling points, identification of a sufficient list of controlled indicators, quality of results, etc. Conclusions: Before including the results of drinking water quality production control in the drinking water quality monitoring system, it is necessary to set the requirements for selecting monitoring sites, analytes, frequency of testing, etc. To legitimize the use of production control results, it is important to develop regulations that oblige organizations carrying out production control of drinking water quality to submit their results to Rospotrebnadzor bodies and institutions for their use in comprehensive drinking water quality assessments.


2011 ◽  
pp. 306-317
Author(s):  
Kyle B. Murray ◽  
Cory A. Habulin

This chapter introduces a community facilitation model for e-government. The central tenet of this approach is the empowerment of a segment of the population to act, by providing the tools and information necessary to tackle issues that have been difficult to address with traditional approaches to government. Under this model, government provides an initial spark and then plays a supporting role in the growth of the community. By doing so, the costs of the program are minimized while the impact of the program is maximized. We examine the viability of the model by looking at a case study in water quality monitoring. The case illustrates the power of a government facilitated community of action to address an important problem, and it suggests that such a model can be applied globally and may be relevant to government initiatives beyond water monitoring.


Sign in / Sign up

Export Citation Format

Share Document