Quantitative Analysis and Comparison of Symmetric Cryptographic Security Algorithms

Author(s):  
Mahaba Saad ◽  
Khalid Youssef ◽  
Hala Abdel-Kader

<p>Nowadays, the rapid evolution of communication systems offers, to a very large percentage of population, access to a huge amount of information and a variety of means to use in order to exchange personal data. Hence the search for the best solution to offer the necessary protection against the data intruders’ attacks along with providing these services in time is one of the most interesting subjects in the security related communities. Cryptography is usually referred to as “the study of secret”. Encryption is the process of converting normal text to unreadable form. There are a variety of encryption algorithms have been developed. This paper provides quantitative analysis and comparison of some symmetric key cryptographic ciphers (DES, 3DES, AES, Blowfish, RC5, and RC6).  The quantitative analysis approach is a step towards optimizing the security operations for an efficient next generation family of network processors with enhanced speed and power performance. A framework will be proposed as a reference model for quantitative analysis of security algorithm mathematical and logical operations. </p>

Author(s):  
Mahaba Saad ◽  
Khalid Youssef ◽  
Mohamed Tarek ◽  
Hala Abdel-Kader

<p>Nowadays, demands of data security are increasing, especially after introduction of wireless communications to the masses. Cryptographic algorithms are mainly used to obtain confidentiality and integrity of data in communication. There are a variety of encryption algorithms have been developed. This paper provides quantitative analysis and comparison of some symmetric key cryptographic ciphers (DES, 3DES, AES, Blowfish, RC5, and RC6).  The quantitative analysis approach is a step towards optimizing the security operations for an efficient next generation family of network processors with enhanced speed and power performance. A framework will be proposed as a reference model for quantitative analysis of security algorithm mathematical and logical operations. This paper also provides a dynamic crypto processor used for selected symmetric key cryptographic ciphers   and  provides an implementation of 16bit cryptographic processor that performs logical operations and arithmetic operations like rotate shift left, modular addition 2^16, S_box operation, and key expansion operation  on spartan6 lower power, xc6slx150L-1lfgg676 FPGA. Simulation results show that developed processor working with high Speed, low power, and low delay time. </p>


Nanophotonics ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Wei Shi ◽  
Ye Tian ◽  
Antoine Gervais

AbstractThe tremendous growth of data traffic has spurred a rapid evolution of optical communications for a higher data transmission capacity. Next-generation fiber-optic communication systems will require dramatically increased complexity that cannot be obtained using discrete components. In this context, silicon photonics is quickly maturing. Capable of manipulating electrons and photons on the same platform, this disruptive technology promises to cram more complexity on a single chip, leading to orders-of-magnitude reduction of integrated photonic systems in size, energy, and cost. This paper provides a system perspective and reviews recent progress in silicon photonics probing all dimensions of light to scale the capacity of fiber-optic networks toward terabits-per-second per optical interface and petabits-per-second per transmission link. Firstly, we overview fundamentals and the evolving trends of silicon photonic fabrication process. Then, we focus on recent progress in silicon coherent optical transceivers. Further scaling the system capacity requires multiplexing techniques in all the dimensions of light: wavelength, polarization, and space, for which we have seen impressive demonstrations of on-chip functionalities such as polarization diversity circuits and wavelength- and space-division multiplexers. Despite these advances, large-scale silicon photonic integrated circuits incorporating a variety of active and passive functionalities still face considerable challenges, many of which will eventually be addressed as the technology continues evolving with the entire ecosystem at a fast pace.


Author(s):  
Ikponmwosa Oghogho ◽  
Dickinson C. Odikayor ◽  
Abayomi-Alli Adebayo ◽  
Samuel T. Wara

This chapter presents VoIP as a disruptive technology to GSM technology as well as the issues, controversies, and problems surrounding its deployment. It gives a general introduction of the evolution of communication systems from the POTS, to GSM, and now VoIP. Several issues that surround the deployment of VoIP such as provision of PSTN equivalent services by VoIP service providers, regulation of the service, introduction of latency and other counter measures by some operators, threat posed to PSTN providers due to emergence of VoIP, the need for technical standardization of VoIP, security issues, different cost structure, and quality of service provided were also discussed in details. Solutions and recommendations were suggested to overcome the challenges outlined. VoIP is presented as the way of the future for communication. When this finally happens depends on how fast the challenges outlined in this chapter are addressed. Future and emerging research trends in the deployment of VoIP such as locating users in a secure and reliable way, monitoring VoIP networks, as well as intrusion detection and prevention on SIP were also considered, after which, conclusion was made. This chapter is both informative and interesting.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5145
Author(s):  
Craig Hill ◽  
Vincent S. Neary ◽  
Michele Guala ◽  
Fotis Sotiropoulos

The mechanical power and wake flow field of a 1:40 scale model of the US Department of Energy’s Reference Model 1 (RM1) dual rotor tidal energy converter are characterized in an open-channel flume to evaluate power performance and wake flow recovery. The NACA-63(4)-24 hydrofoil profile in the original RM1 design is replaced with a NACA-4415 profile to minimize the Reynolds dependency of lift and drag characteristics at the test chord Reynolds number. Precise blade angular position and torque measurements were synchronized with three acoustic Doppler velocimeters (ADV) aligned with each rotor centerline and the midpoint between the rotor axes. Flow conditions for each case were controlled to maintain a hub height velocity, uhub= 1.04 ms−1, a flow Reynolds number, ReD= 4.4 × 105, and a blade chord length Reynolds number, Rec= 3.1 × 105. Performance was measured for a range of tip-speed ratios by varying rotor angular velocity. Peak power coefficients, CP= 0.48 (right rotor) and CP= 0.43 (left rotor), were observed at a tip speed ratio, λ= 5.1. Vertical velocity profiles collected in the wake of each rotor between 1 and 10 rotor diameters are used to estimate the turbulent flow recovery in the wake, as well as the interaction of the counter-rotating rotor wakes. The observed performance characteristics of the dual rotor configuration in the present study are found to be similar to those for single rotor investigations in other studies. Similarities between dual and single rotor far-wake characteristics are also observed.


Author(s):  
Mike Sabelkin ◽  
François Gagnon

The proposed communication system architecture is called TOMAS, which stands for data Transmission oriented on the Object, communication Media, Application, and state of communication Systems. TOMAS could be considered a Cross-Layer Interface (CLI) proposal, since it refers to multiple layers of the Open Systems Interconnection Basic Reference Model (OSI). Given particular scenarios of image transmission over a wireless LOS channel, the wireless TOMAS system demonstrates superior performance compared to a JPEG2000+OFDM system in restored image quality parameters over a wide range of wireless channel parameters. A wireless TOMAS system provides progressive lossless image transmission under influence of moderate fading without any kind of channel coding and estimation. The TOMAS system employs a patent pending fast analysis/synthesis algorithm, which does not use any multiplications, and it uses three times less real additions than the one of JPEG2000+OFDM.


2015 ◽  
Vol 282 (1818) ◽  
pp. 20152169 ◽  
Author(s):  
Atsushi Yamauchi ◽  
Minus van Baalen ◽  
Yutaka Kobayashi ◽  
Junji Takabayashi ◽  
Kaori Shiojiri ◽  
...  

For a communication system to be stable, senders should convey honest information. Providing dishonest information, however, can be advantageous to senders, which imposes a constraint on the evolution of communication systems. Beyond single populations and bitrophic systems, one may ask whether stable communication systems can evolve in multitrophic systems. Consider cross-species signalling where herbivore-induced plant volatiles (HIPVs) attract predators to reduce the damage from arthropod herbivores. Such plant signals may be honest and help predators to identify profitable prey/plant types via HIPV composition and to assess prey density via the amount of HIPVs. There could be selection for dishonest signals that attract predators for protection from possible future herbivory. Recently, we described a case in which plants release a fixed, high amount of HIPVs independent of herbivore load, adopting what we labelled a ‘cry-wolf’ strategy. To understand when such signals evolve, we model coevolutionary interactions between plants, herbivores and predators, and show that both ‘honest’ and ‘cry-wolf’ types can emerge, depending on the assumed plant–herbivore encounter rates and herbivore population density. It is suggested that the ‘cry-wolf’ strategy may have evolved to reduce the risk of heavy damage in the future. Our model suggests that eco-evolutionary feedback loops involving a third species may have important consequences for the stability of this outcome.


Sign in / Sign up

Export Citation Format

Share Document