scholarly journals Estimation of avoidable losses caused by Meloidogyne incognita infecting cucumber in poly-house

2021 ◽  
Vol 2 (1) ◽  
pp. 35-40
Author(s):  
Shakti Singh Bhati ◽  
B. L. Baheti

Cucumber (Cucumis sativus L.) is a high nutritious and mineral-rich vegetable, which occupies a prominent place as a salad and vegeta-ble. It is being used in many ways in the daily diet of humans and widely cultivated worldwide. The decrease of agricultural land, ad-verse environmental conditions and continuous increase of popula-tion, the demand of nutritious food is a matter of great concern to the world. Protected cultivation is a very effective tool to solve this problem because in this cultivation the productivity of crops is very high as compared to open field conditions. High value crops suc-cessfully grown in protected cultivation, specially vegetables (cu-cumber, tomato, Capsicum etc.) which are highly susceptible to the numerous pests and pathogens, including phyto-parasitic nema-todes (specially root-knot nematode, Meloidogyne spp.). With this view, present trial was taken to estimate the avoidable losses caused by Meloidogyne incognita infecting cucumber in poly-house situated on farmer’s field with the application of phorate at 2 kg a.i. ha-1 over check. Results exhibited that application of chemical treatment significantly reduced number of galls per 5 g roots, egg masses per 5 g roots, eggs & juveniles per egg mass and final nema-tode population 79.03, 81.10, 30.91 and 56.54%, respectively. Avoidable yield losses were recorded to the tune of 66.84% on cu-cumber by M. incognita in poly-house.

Author(s):  
Refik Bozbuga ◽  
H. Yildiz Dasgan ◽  
Yelderem Akhoundnejad ◽  
Mustafa Imren ◽  
Halil Toktay ◽  
...  

Root knot nematodes (<italic>Meloidogyne</italic> spp.) cause immense yield losses in crops throughout the world. Use of resistant germplasms of plants limits the root knot nematode damages. In this study, 87 common bean (<italic>Phaseoulus vulgaris</italic> L.) genotypes were screened against the root knot nematode, <italic>Meloidogyne incognita</italic> to determine the resistance response under growth chamber conditions in Turkey. <italic>P. vulgaris</italic> genotypes were evaluated based on resistance index (RI); root galling severity and nematode egg mass production on a 1-9 scale. The nematode negatively influenced the growth (fresh weight) of bean genotypes. At the completion of the study, 13 bean genotypes were found as immune (Sehirali), highly resistant (TR42164, Seleksiyon 5, Seker Fasulye, Fas-Agadir-Suk-1) and moderately resistant (Acik Badem, TR68587, TR43477, TR53827, TR28018, Gülnar-3, Siyah Fasulye, Kibris Amerikan) against <italic>M. incognita</italic> thus suggesting the use of such genotypes in breeding studies as a parental material to develop the root knot nematode resistant cultivars.


2019 ◽  
Vol 12 (1) ◽  
pp. 24-37
Author(s):  
M.A. Radwan ◽  
A.S.A. Saad ◽  
H.A. Mesbah ◽  
H.S. Ibrahim ◽  
M.S. Khalil

Summary Avermectins and spinosyns are structurally related natural products of microbial origin and belong to a new family of macrolides which are active against a vast array of invertebrate pests. In the present study, the effects of four members of macrolides; abamectin (ABM), emamectin benzoate (EMB), spinosad (SPI) and spinetoram (SPIT), on Meloidogyne incognita were investigated under in vitro and in vivo conditions. All compounds reduced egg hatching and led to high mortality of the nematode second-stage juveniles (J2). ABM showed the maximum rate of egg hatching inhibition and J2 mortality while SPIT recorded the minimum. All treatments reduced the number of galls, egg masses, eggs/egg mass in roots and J2 in the soil when compared to the control. Based on the 10 folds of the 24 h-LC50 values of J2 mortality in vitro, EMB and ABM exhibited higher percent reduction in galls (79.68 and 71.45%), egg masses (75.19 and 70.54%), eggs/egg mass (60.49 and 40.91%) and J2 in the soil (90.31 and 86.54%), respectively, compared to SPI and SPIT. Significant increase in tomato shoot height occurred in all biopesticides (10 folds) and SPIT (20 folds). SPI at 10 folds of the 24 h-LC50 values of J2 mortality in vitro, significantly increased root length while ABM at 50 folds and SPIT at 20 folds decreased root length by 5.15% and 5.88%, respectively, compared to the untreated inoculated plants. In all treatments, the dry shoot and root weights increased, compared to the untreated control. Our findings suggest that these macrolides have the ability to regulate nematode population densities and may be an alternative to classical nematicides.


2020 ◽  
Vol 49 (3) ◽  
pp. 579-584
Author(s):  
Ifra Siddique ◽  
Ishrat Naz ◽  
Raja Asad Ali Khan ◽  
Musharaf Ahmed ◽  
Syeda Maryam Hussain

Fourteen cultivars of cucumber were screened for their resistance to the Southern root-knot nematode, Meloidogyne incognita (Kofoid and White) Chitwood in an in planta experiment. The pots were maintained in greenhouse with CRD for 50 days after inoculation. The cultivar DS92-05 induced significant mortality and was rated “moderately resistant (MR)”. This cultivar showed increase in plant growth parameters including vine length. The cultivars DS92-06, Laghman, Sultan and Desitype were moderately susceptible (MS). The cultivar Rehan and DS96-299 were rated susceptible (S) whereas DS97-299, Chaiya, Beitalpha, Alto, DS92-04 and Local were rated as highly susceptible (HS). DS92-05 is thus promising for sustainable agriculture, specially in those areas with high population density of Southern Root knot nematode.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 622a-622 ◽  
Author(s):  
W. R. Maluf ◽  
S. M. Azevedo ◽  
V.P. Campos

Heritabilities for resistance to root knot nematodes (Meloidogyne javanica and Meloidogyne incognita races 1, 2, 3, and 4) were studied in a population of 226 sweetpotato clones of diverse origin. For each nematode isolate tested, 128-cell speedling trays were filled with previously inoculated substrate (30000 eggs/1000 mL substrate). Sweetpotato clones suitably tagged and identified were randomly planted in the cells (one plant/cell), with a total of four plants per clone per isolate. Ninety days after inoculation, sweetpotato plants had their roots washed for substrate removal, and treated with 150 mg·L–1 Phloxine B to stain nematode egg masses. The number of egg masses per root was recorded, and plants were accordingly assigned scores from 0 (highly resistant) to 5 (highly susceptible). Broad-sense heritability estimates were 0.87, 0.91, 0.81, 0.95, and 0.93 respectively for resistance to M. javanica and races 1, 2, 3, and 4 of M. incognita. The frequencies of resistant genotypes were higher for M. javanica and lower for M. incognita race 2. Genotypic correlations (rG) among the resistances to the various Meloidogyne isolates utilized were weak, ranging from 0.11 to 0.57, suggesting independent genetic controls. Clones could be selected, however, with high levels of resistance to all nematode isolates tested. (This work was supported by CNPq, CAPES, FAPEMIG, and FAEPE/UFLA.)


2021 ◽  
Author(s):  
Chandra Prakash Nama ◽  
B.L. Baheti

Abstract AimThe experiment was carried out during two consecutive Kharif seasons to test the combined efficacy of biochemicals i.e. salicylic acid, ascorbic acid and L-arginine each at 2 % w/w as seed treatment and botanicals viz. neem, lantana and parthenium leaves powder each at 5 g per plant for the management of root-knot nematode, Meloidogyne incognita infecting cluster bean..Method All treatments applied as soil application at the time of sowing. Before sowing observation on initial nematode population/100 cc soil and at the termination of experiment number of galls/plant, number of egg masses/plant, number of eggs and larvae/egg mass, final nematode population/100 cc soil and yield (q/ha) were recorded. ResultAmong different combinations, minimum nematode population were observed with ascorbic acid at 2 per cent w/w + neem leaves powder at 5 g per plant followed by ascorbic acid at 2 per cent + lantana leaves powder at 5 g per plant and salicylic acid at 2 per cent + neem leaves powder at 5 g per plant.Conclusion: Results of experiment showed that application of biochemicals along with botanicals significantly reduced galls per plant as compared to untreated check.


2012 ◽  
Vol 48 (No. 4) ◽  
pp. 170-178 ◽  
Author(s):  
M.S. Khalil ◽  
M.E.I. Badawy

The nematicidal activity of four molecular weights (2.27 &times; 10<sup>5</sup>, 3.60 &times; 10<sup>5</sup>, 5.97 &times; 10<sup>5</sup>, and 9.47 &times; 10<sup>5</sup> g/mol) of a biopolymer chitosan was assayed against the root-knot nematode, Meloidogyne incognita, in vitro and in pot experiments. In laboratory assays, the nematode mortality was significantly influenced by exposure times and chitosan molecular weight. Low molecular weight chitosan (2.27 &times; 10<sup>5</sup> g/mol) was the most effective in killing the nematode with EC<sub>50</sub> of 283.47 and 124.90 mg/l after 24 and 48 h of treatment, respectively. In a greenhouse bioassay, all the compounds mixed in soil at one- and five-fold concentrations of the LC<sub>50</sub> value significantly reduced population, egg mass, and root galling of tomato seedlings compared with the untreated control. In general, the nematicidal activity of these compounds was increased dramatically with a decrease in the molecular weight. The results suggest that the chitosan at low molecular weight may serve as a natural nematicide


2015 ◽  
Vol 33 (4) ◽  
pp. 488-492 ◽  
Author(s):  
Claudia R Dias-Arieira ◽  
Danielle Mattei ◽  
Heriksen H Puerari ◽  
Regina CF Ribeiro

ABSTRACT: Root-knot nematodes, Meloidogyne spp., are among the most important parasites of the lettuce crop. Managing these organisms is difficult due to limitations in genetic (use of resistant cultivars) and chemical control. Thus, new practices should be sought to reduce their reproduction. The present study aimed to evaluate the application of organic amendments in the control of Meloidogyne incognita in lettuce. At first, tomato plants were inoculated to establish an initial population in the soil. After 60 days, the aerial part was discarded, and the lettuce seedlings were transplanted into pots. Two days after transplanting, the treatments bokashi, crambe cake, whey protein, cottonseed composted and shredded wood chip composted were applied at 20 g or 20 mL per pot. Water was applied as control treatment. After 70 days, bokashi and crambe meal reduced the number of eggs/g of root and promoted plant growth. Results obtained with whey protein, cottonseed meal and composted shredded wood chip did not differ from those obtained with the control treatment. Bokashi and crambe cake are effective in the M. incognita control under controlled conditions.


2009 ◽  
Vol 34 (2) ◽  
pp. 1077-1090
Author(s):  
A. H. Kheraba ◽  
A. A. Osman ◽  
M. M. Shahien ◽  
Y. T. E. EL-Lathiy ◽  
Eman B. El-Remaly

Sign in / Sign up

Export Citation Format

Share Document