GPIb is involved in platelet aggregation induced by mucetin, a snake C-type lectin protein from Chinese habu (Trimeresurus mucrosquamatus) venom

2004 ◽  
Vol 91 (06) ◽  
pp. 1168-1176 ◽  
Author(s):  
Qiumin Lu ◽  
Alexei Navdaev ◽  
Jeannine Clemetson ◽  
Kenneth Clemetson

SummaryMucetin (Trimeresurus mucrosquamatus venom activator, TMVA) is a potent platelet activator purified from Chinese habu (Trimeresurus mucrosquamatus) venom. It belongs to the snake venom heterodimeric C-type lectin family and exists in several multimeric forms. We now show that binding to platelet glycoprotein (GP) Ib is involved in mucetin-induced platelet aggregation. Antibodies against GPIb as well as the GPIb-blocking C-type lectin echicetin inhibited mucetin-induced platelet aggregation. Binding of GPIb was confirmed by affinity chromatography and Western blotting. Antibodies against GPVI inhibited convulxin- but not mucetin-induced aggregation. Signalling by mucetin involved rapid tyrosine phosphorylation of a number of proteins including Syk, Src, LAT and PLCγ2. Mucetininduced phosphorylation of the Fcγ chain of platelet was greatly promoted by inhibition of αIIbβ3 by the peptidomimetic EMD 132338, suggesting that phosphatases downstream of αIIbβ3 activation are involved in dephosphorylation of Fcγ. Unlike other multimeric snake C-type lectins that act via GPIb and only agglutinate platelets, mucetin activates αIIbβ3. Inhibition of αIIbβ3 strongly reduced the aggregation response to mucetin, indicating that activation of αIIbβ3 and binding of fibrinogen are involved in mucetin-induced platelet aggregation. Apyrase and aspirin also inhibit platelet aggregation induced by mucetin, suggesting that ADP and thromboxane A2 are involved in autocrine feedback. Sequence and structural comparison with closely related members of this protein family point to features that may be responsible for the functional differences.

1998 ◽  
Vol 79 (01) ◽  
pp. 211-216 ◽  
Author(s):  
Lysiane Hilbert ◽  
Claudine Mazurier ◽  
Christophe de Romeuf

SummaryType 2B of von Willebrand disease (vWD) refers to qualitative variants with increased affinity of von Willebrand factor (vWF) for platelet glycoprotein Ib (GPIb). All the mutations responsible for type 2B vWD have been located in the A1 domain of vWF. In this study, various recombinant von Willebrand factors (rvWF) reproducing four type 2B vWD missense mutations were compared to wild-type rvWF (WT-rvWF) for their spontaneous binding to platelets and their capacity to induce platelet activation and aggregation. Our data show that the multimeric pattern of each mutated rvWF is similar to that of WT-rvWF but the extent of spontaneous binding and the capacity to induce platelet activation and aggregation are more important for the R543Q and V553M mutations than for the L697V and A698V mutations. Both the binding of mutated rvWFs to platelets and platelet aggregation induced by type 2B rvWFs are inhibited by monoclonal anti-GPIb and anti-vWF antibodies, inhibitors of vWF binding to platelets in the presence of ristocetin, as well as by aurin tricarboxylic acid. On the other hand, EDTA and a monoclonal antibody directed against GPIIb/IIIa only inhibit platelet aggregation. Furthermore, the incubation of type 2B rvWFs with platelets, under stirring conditions, results in the decrease in high molecular weight vWF multimers in solution, the extent of which appears correlated with that of plasma vWF from type 2B vWD patients harboring the corresponding missense mutation. This study supports that the binding of different mutated type 2B vWFs onto platelet GPIb induces various degrees of platelet activation and aggregation and thus suggests that the phenotypic heterogeneity of type 2B vWD may be related to the nature and/or location of the causative point mutation.


1986 ◽  
Vol 56 (01) ◽  
pp. 057-062 ◽  
Author(s):  
Martine Croset ◽  
M Lagarde

SummaryWashed human platelets were pre-loaded with icosapentaenoic acid (EPA), docosahexaenoic acid (DHA) or EPA + DHA and tested for their aggregation response in comparison with control platelets. In fatty acid-rich platelets, an inhibition of the aggregation could be observed when induced by thrombin, collagen or U-46619. The strongest inhibition was observed with DHA-rich platelets and it was reduced when DHA was incorporated in the presence of EPA.Study of fatty acid distribution in cell lipids after loading showed that around 90% of EPA or DHA taken up was acylated into phospholipids and a very small amount (less than 2%) remained in their free and hydroxylated forms. DHA was more efficiently acylated into phosphatidylethanolamine (PE) than into phosphatidylinositol (PI) in contrast to what observed with EPA, and both acids were preferentially incorporated into phosphatidylcholine (PC). EPA inhibited total incorporation of DHA and increased its relative acylation into PE at the expense of PC. In contrast, DHA did not affect the acylation of EPA. Upon stimulation with, thrombin, EPA was liberated from phospholipids and oxygenated (as judged by the formation of its monohydroxy derivative) whereas DHA was much less metabolized, although consistently transferred into PE.It is concluded that EPA and DHA might affect platelet aggregation via different mechanisms when pre-loaded in phospholipids. Whereas EPA is known to alter thromboxane A2 metabolism from endogenous arachidonic acid, by competing with it, DHA might act directly at the membrane level for inhibiting aggregation.


1977 ◽  
Author(s):  
R.L. Kinlough-Rathbone ◽  
D.W. Perry ◽  
M.A. Packham ◽  
J.F. Mustard

There are at least 3 mechanisms involved in thrombin-induced aggregation and release: (1) released ADP, (2) formation of thromboxane A2 and (3) a third mechanism(s). We have examined whether the third pathway is due to formation or release of a substance from platelets which affects other platelets. Washed human platelets were exposed to thrombin (2.5 u/ml) for 15 min at 37°C in the presence of indomethacin to block thromboxane A2 formation. Platelets were removed by centrifugation and the thrombin neutralized with hirudin or DFP. Addition of the superna te to washed human platelets prelabeled with 14C-serotonin caused platelet aggregation but release did not occur. Treatment of the supernate with apyrase, CP/CPK or dialysis abolished aggregation, indicating that the material was ADP. Thus, the mechanism by which thrombin induces aggregation and release with human platelets in the presence of agents which destroy ADP and block the formation of thromboxane A2 is a direct effect of thrombin on platelets and does not involve a substance freed from platelets. In contrast, when washed rabbit platelets were treated with thrombin in the presence of indomethacin and the released ADP was removed, material remained in the supernate which caused aggregation and release from washed rabbit platelets but was without effect on washed human platelets. The activity of this material (MW > 10,000) was not abolished by dialysis or boiling. Therefore rabbit platelets differ from human platelets because they have a mechanism in addition to released ADP, thromboxane A2 and the direct effect of thrombin on platelets that can cause aggregation and release.


2001 ◽  
Vol 56 (1-2) ◽  
pp. 106-110 ◽  
Author(s):  
Kerstin Fabian ◽  
Timm Anke ◽  
Olov Sterner

Abstract Mariannaeapyrone ((E)-2-(1,3,5,7-tetramethyl-5-nonenyl)-3,5-dimethyl-6-hydroxy-4H-pyran-4-one) is a new fungal metabolite isolated from fermentations of the common mycophilic deuteromycete Mariannaea elegans. The chemical structure of the 4-pyrone was determined by spectroscopic techniques. Mariannaeapyrone is a selective inhibitor of the thromboxane A2 induced aggregation of human platelets, whereas only weak cytotoxic and antimicrobial effects could be observed.


Blood ◽  
1987 ◽  
Vol 69 (3) ◽  
pp. 924-928 ◽  
Author(s):  
JG Kelton ◽  
JC Moore ◽  
WG Murphy

Many patients with thrombotic thrombocytopenic purpura (TTP) have a platelet aggregating factor in their serum that may be pathologically linked with the disease process. To help characterize the type of platelet aggregation and platelet release induced by the sera from seven TTP patients, we measured the ability of a variety of inhibitors of platelet function as well as the ability of monoclonal antibodies (MoAbs) against platelet glycoproteins to inhibit TTP sera-induced platelet aggregation and release. These results were compared with the ability of the same inhibitors to block platelet aggregation induced by ristocetin, collagen, ADP, thrombin, and IgG-immune complexes. Monoclonal antibody directed against platelet glycoprotein Ib totally inhibited ristocetin-induced aggregation and release but had no effect on aggregation and release induced by the TTP sera or by any of the other platelet agonists. However, the MoAb against glycoproteins IIb/IIIa inhibited aggregation and release caused by TTP sera as well as by collagen, thrombin, and ADP but had no effect on aggregation and release induced by ristocetin. The aggregating activity could be abolished by heparin but not by the serine protease inhibitor PMSF (1 mmol/L). And although monomeric human IgG and purified Fc fragments of IgG inhibited IgG-immune complex-induced aggregation and release, they had no effect on TTP sera-induced aggregation and release nor on aggregation and release induced by any of the other agonists. Consistent with these in vitro studies showing no effect of IgG were the in vivo observations that intravenous (IV) IgG was without effect when administered to three patients with TTP. This study indicates that although a von Willebrand factor (vWF)-rich preparation of cryoprecipitate enhances the in vitro platelet aggregation and release caused by sera from the seven TTP patients we studied, the pathway of aggregation and release is not via platelet glycoprotein Ib. Also the aggregating factor of TTP sera is not neutralized in vitro or in vivo by IgG.


2019 ◽  
Vol 20 (20) ◽  
pp. 5040 ◽  
Author(s):  
Thien Ngo ◽  
Keunyoung Kim ◽  
Yiying Bian ◽  
Hakjun Noh ◽  
Kyung-Min Lim ◽  
...  

Antiplatelet agents are important in the pharmacotherapeutic regime for many cardiovascular diseases, including thrombotic disorders. However, bleeding, the most serious adverse effect associated with current antiplatelet therapy, has led to many efforts to discover novel anti-platelet drugs without bleeding issues. Of note, shear stress-induced platelet aggregation (SIPA) is a promising target to overcome bleeding since SIPA happens only in pathological conditions. Accordingly, this study was carried out to discover antiplatelet agents selectively targeting SIPA. By screening various herbal extracts, Paeonia suffruticosa and its major bioactive constituent, paeoniflorin, were identified to have significant inhibitory effects against shear-induced aggregation in human platelets. The effects of paeoniflorin on intraplatelet calcium levels, platelet degranulation, and integrin activation in high shear stress conditions were evaluated by a range of in vitro experiments using human platelets. The inhibitory effect of paeoniflorin was determined to be highly selective against SIPA, through modulating von Willebrand Factor (vWF)-platelet glycoprotein Ib (GP Ib) interaction. The effects of paeoniflorin on platelet functions under high shear stress were confirmed in the ex vivo SIPA models in rats, showing the good accordance with the anti-SIPA effects on human platelets. Treatment with paeoniflorin significantly prevented arterial thrombosis in vivo from the dose of 10 mg/kg without prolonging bleeding time or blood clotting time in rats. Collectively, our results demonstrated that paeoniflorin can be a novel anti-platelet agent selectively targeting SIPA with an improved safety profile.


Blood ◽  
1987 ◽  
Vol 69 (3) ◽  
pp. 924-928 ◽  
Author(s):  
JG Kelton ◽  
JC Moore ◽  
WG Murphy

Abstract Many patients with thrombotic thrombocytopenic purpura (TTP) have a platelet aggregating factor in their serum that may be pathologically linked with the disease process. To help characterize the type of platelet aggregation and platelet release induced by the sera from seven TTP patients, we measured the ability of a variety of inhibitors of platelet function as well as the ability of monoclonal antibodies (MoAbs) against platelet glycoproteins to inhibit TTP sera-induced platelet aggregation and release. These results were compared with the ability of the same inhibitors to block platelet aggregation induced by ristocetin, collagen, ADP, thrombin, and IgG-immune complexes. Monoclonal antibody directed against platelet glycoprotein Ib totally inhibited ristocetin-induced aggregation and release but had no effect on aggregation and release induced by the TTP sera or by any of the other platelet agonists. However, the MoAb against glycoproteins IIb/IIIa inhibited aggregation and release caused by TTP sera as well as by collagen, thrombin, and ADP but had no effect on aggregation and release induced by ristocetin. The aggregating activity could be abolished by heparin but not by the serine protease inhibitor PMSF (1 mmol/L). And although monomeric human IgG and purified Fc fragments of IgG inhibited IgG-immune complex-induced aggregation and release, they had no effect on TTP sera-induced aggregation and release nor on aggregation and release induced by any of the other agonists. Consistent with these in vitro studies showing no effect of IgG were the in vivo observations that intravenous (IV) IgG was without effect when administered to three patients with TTP. This study indicates that although a von Willebrand factor (vWF)-rich preparation of cryoprecipitate enhances the in vitro platelet aggregation and release caused by sera from the seven TTP patients we studied, the pathway of aggregation and release is not via platelet glycoprotein Ib. Also the aggregating factor of TTP sera is not neutralized in vitro or in vivo by IgG.


Blood ◽  
1992 ◽  
Vol 79 (8) ◽  
pp. 1995-2003 ◽  
Author(s):  
C Legrand ◽  
V Thibert ◽  
V Dubernard ◽  
B Begault ◽  
J Lawler

Abstract We have investigated the molecular requirements for thrombospondin (TSP) to bind to the platelet surface and to support the subsequent secretion-dependent platelet aggregation. For this, we used two distinct murine monoclonal antibodies (MoAbs), designated MAI and MAII, raised against human platelet TSP, and three polyclonal antibodies, designated R3, R6, and R5, directed against fusion proteins containing the type 1 (Gly 385-Ile 522), type 2 (Pro 559-Ile 669), and type 3 (Asp 784-Val 932) repeating sequences, respectively. Among them, R5 and R6, but not R3, inhibited thrombin-induced aggregation of washed platelets and the concomitant secretion of serotonin. These antibodies, however, did not inhibit the expression of TSP on thrombin-activated platelets, as measured by the binding of a radiolabeled MoAb to TSP, suggesting that they may inhibit platelet aggregation by interfering with a physiologic event subsequent to TSP binding. In contrast, MoAb MAII, which reacts with an epitope located within the heparin-binding domain of TSP, inhibited both TSP surface expression and platelet aggregation/secretion induced by thrombin. In addition, this MoAb inhibited in a dose-dependent manner (IC50 approximately 0.5 mumol/L) the interaction of 125I-TSP with immobilized fibrinogen and platelet glycoprotein IV, both potential physiologic receptors for TSP on thrombin-activated platelets. These results indicate that the interaction of TSP with the surface of activated platelets can be modulated at the level of a specific epitope located within the amino terminal heparin-binding domain of the molecule. Thus, selective inhibition of the platelet/TSP interaction may represent an alternative approach to the inhibition of platelet aggregation.


1979 ◽  
Author(s):  
G. G. Duncan ◽  
G. M. Smith

Intravascular platelet aggregation can be studied by measuring the fall in the circulating platelet count induced by aggregating agents in anaesthetized animals. The Technicon Auto-counter was modified and connected via a double cannula to an anaesthetized rat to give a continuous count of the number of circulating platelets (1). Adenosine diphosphate (ADP), Collagen, Arachidonic acid (AA) and 5-Hydroxytryptamine (5-HT) were given at 15 minute intervals over a period of 2-3 hours. Aspirin (10 mg/Kg IV ) and Indomethacin (1-8 mg/Kg IV) partially inhibited collagen-induced aggregation and Indomethacin (2 mg/Kg IV) completely inhibited AA-induced aggregation. Adenosine (0.25 mg/min) inhibited the ADP-induced aggregation but did not inhibit aggregation produced by collagen or the residual response to collagen that remains after the addition of indomethacin.Reproducible responses to ADP and collagen were obtained but responses to AA and 5-HT were not reliable. Collagen-induced aggregation is thought to be mediated by the liberation of ADP, 5-HT and the formation of prostaglandin (PG ) endoperoxides and thromboxane A2. This study has shown that collagen-induced aggregation is reduced by inhibition of PG synthesis but the involvement of ADP or 5-HT could not be shown.


2010 ◽  
Vol 638 (1-3) ◽  
pp. 5-12 ◽  
Author(s):  
Fernanda C.F. Brito ◽  
Arthur E. Kummerle ◽  
Claire Lugnier ◽  
Carlos A.M. Fraga ◽  
Eliezer J. Barreiro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document