scholarly journals Left Ventricular Activation Time in Normal Men

Circulation ◽  
1959 ◽  
Vol 19 (6) ◽  
pp. 868-872
Author(s):  
TAKASHI WADA
2021 ◽  
Vol 10 (4) ◽  
pp. 822
Author(s):  
Luuk I.B. Heckman ◽  
Justin G.L.M. Luermans ◽  
Karol Curila ◽  
Antonius M.W. Van Stipdonk ◽  
Sjoerd Westra ◽  
...  

Background: Left bundle branch area pacing (LBBAP) has recently been introduced as a novel physiological pacing strategy. Within LBBAP, distinction is made between left bundle branch pacing (LBBP) and left ventricular septal pacing (LVSP, no left bundle capture). Objective: To investigate acute electrophysiological effects of LBBP and LVSP as compared to intrinsic ventricular conduction. Methods: Fifty patients with normal cardiac function and pacemaker indication for bradycardia underwent LBBAP. Electrocardiography (ECG) characteristics were evaluated during pacing at various depths within the septum: starting at the right ventricular (RV) side of the septum: the last position with QS morphology, the first position with r’ morphology, LVSP and—in patients where left bundle branch (LBB) capture was achieved—LBBP. From the ECG’s QRS duration and QRS morphology in lead V1, the stimulus- left ventricular activation time left ventricular activation time (LVAT) interval were measured. After conversion of the ECG into vectorcardiogram (VCG) (Kors conversion matrix), QRS area and QRS vector in transverse plane (Azimuth) were determined. Results: QRS area significantly decreased from 82 ± 29 µVs during RV septal pacing (RVSP) to 46 ± 12 µVs during LVSP. In the subgroup where LBB capture was achieved (n = 31), QRS area significantly decreased from 46 ± 17 µVs during LVSP to 38 ± 15 µVs during LBBP, while LVAT was not significantly different between LVSP and LBBP. In patients with normal ventricular activation and narrow QRS, QRS area during LBBP was not significantly different from that during intrinsic activation (37 ± 16 vs. 35 ± 19 µVs, respectively). The Azimuth significantly changed from RVSP (−46 ± 33°) to LVSP (19 ± 16°) and LBBP (−22 ± 14°). The Azimuth during both LVSP and LBBP were not significantly different from normal ventricular activation. QRS area and LVAT correlated moderately (Spearman’s R = 0.58). Conclusions: ECG and VCG indices demonstrate that both LVSP and LBBP improve ventricular dyssynchrony considerably as compared to RVSP, to values close to normal ventricular activation. LBBP seems to result in a small, but significant, improvement in ventricular synchrony as compared to LVSP.


Heart Rhythm ◽  
2021 ◽  
Vol 18 (8) ◽  
pp. S27
Author(s):  
Ahran Arnold ◽  
Matthew J. Shun-Shin ◽  
Daniel Keene ◽  
James P. Howard ◽  
Ji-Jian Chow ◽  
...  

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Shakeel Jamal ◽  
Beth Bailey ◽  
Rehan Mahmud

Introduction: The relationship between conduction time of a sinus impulse and a paced impulse from His bundle to peak of left ventricular activation (HVAT) has not been systematically studied. Hypothesis: To perform a comparative analysis of HVAT of sinus and paced impulse in non-selective (NS) His bundle pacing (HBP) and selective (S)-HBP. Furthermore, to determine if pacing voltage and presence of His Purkinje system (HPS) disease affects HVAT. Methods: In 102 consecutive patients a comparative analysis of native HVAT and paced HVAT at higher (5-volt) and lower voltage (1-volt) was done in all patients and in groups subdivided into NS-HBP, S-HBP, with and without HPS disease. Results: Compared to sinus HVAT (105.9 ± 24.0 ms), paced HVAT was shorter at 5-volt (97.2 ± 17.9 ms) ( p<0.01 ) and longer at 1-volt ( p<0.01 ). This voltage effect was significant only in NS-HBP (-15.8 ± 15.7 ms, p<0.01 ) but not in selective-HBP (-6.2± 13.6 ms p=0.16 ). In NS-HBP, decrease in HVAT caused by 5-volt was the same in normal vs diseased HPS (-14.5 ± 12.8 vs-13.2 ±16.3 ms). Conclusions: 1) Compared to sinus HVAT, NS-HBP HVAT is significantly shorter at 5-volt, however, tends to prolong at 1-volt.2) The 1-volt to 5-volt HVAT decrease appears to be similar both normal and diseased NS-HBP thus not related to correction of HPS delay. 3) The voltage related decrease in HVAT is significant in presence of pre-excitation wave seen in NS-HBP and is not significant in S-HBP.


Author(s):  
Marek Jastrzebski ◽  
Pawel Moskal ◽  
Piotr Kukla ◽  
Agnieszka Bednarek ◽  
Grzegorz Kielbasa ◽  
...  

Background: During non-selective His bundle (HB) pacing, it is clinically important to confirm His bundle capture vs. right ventricular septal (RVS) capture. The present study aimed to validate the hypothesis that during HB capture left ventricular lateral wall activation time, approximated by the V6 R-wave peak time (V6RWPT), will not be longer than the corresponding activation time during native conduction. Methods: Consecutive patients with permanent HB pacing were recruited; cases with abnormal His-ventricle interval or left bundle branch block were excluded. Two corresponding intervals were compared: stimulus-V6RWPT and native HBpotential-V6RWPT. Difference between these two intervals (delta V6RWPT), diagnostic of lack of HB capture, was identified using receiver operating characteristic (ROC) curve analysis. Results: A total of 723 ECGs (219 with native rhythm, 172 with selective HB, 215 with non-selective HB, and 117 with RVS capture) were obtained from 219 patients. The native HB-V6RWPT, non-selective-, and selective-HB paced V6RWPT were nearly equal, while RVS V6RWPT was 32.0 (±9.5) ms longer. The ROC curve analysis indicated delta V6RWPT > 12 ms as diagnostic of lack of HB capture (specificity of 99.1% and sensitivity of 100%). A blinded observer correctly diagnosed 96.7% (321/332) of ECGs using this criterion. Conclusions: We validated a novel criterion for HB capture that is based on the physiological left ventricular activation time as an individualized reference. HB capture can be diagnosed when paced V6RWPT does not exceed the value obtained during native conduction by more than 12 ms, while longer paced V6RWPT indicates RVS capture.


2021 ◽  
Author(s):  
Marek Jastrzebski ◽  
Pawel Moskal ◽  
Piotr Kukla ◽  
Agnieszka Bednarek ◽  
Grzegorz Kielbasa ◽  
...  

Aims: During non-selective His bundle (HB) pacing, it is clinically important to confirm His bundle capture vs. right ventricular septal (RVS) capture. The present study aimed to validate the hypothesis that during HB capture left ventricular lateral wall activation time, approximated by the V6 R-wave peak time (V6RWPT), will not be longer than the corresponding activation time during native conduction. Methods: Consecutive patients with permanent HB pacing were recruited; cases with abnormal His-ventricle interval or left bundle branch block were excluded. Two corresponding intervals were compared: stimulus-V6RWPT and native HBpotential-V6RWPT. Difference between these two intervals (delta V6RWPT), diagnostic of lack of HB capture, was identified using receiver operating characteristic (ROC) curve analysis. Results: A total of 723 ECGs (219 with native rhythm, 172 with selective HB, 215 with non-selective HB, and 117 with RVS capture) were obtained from 219 patients. The native HB-V6RWPT, non-selective-, and selective-HB paced V6RWPT were nearly equal, while RVS V6RWPT was 32.0 (+/-9.5) ms longer. The ROC curve analysis indicated delta V6RWPT > 12 ms as diagnostic of lack of HB capture (specificity of 99.1% and sensitivity of 100%). A blinded observer correctly diagnosed 96.7% (321/332) of ECGs using this criterion. Conclusion: We validated a novel criterion for HB capture that is based on the physiological left ventricular activation time as an individualized reference. HB capture can be diagnosed when paced V6RWPT does not exceed the value obtained during native conduction by more than 12 ms, while longer paced V6RWPT indicates RVS capture.


EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
A Arnold ◽  
MJ Shun-Shin ◽  
D Keene ◽  
JP Howard ◽  
J Chow ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public Institution(s). Main funding source(s): British Heart Foundation Background: His bundle pacing can be achieved in two ways selective His bundle pacing, where the His bundle is captured alone, and non-selective His bundle pacing, where local myocardium is also captured resulting a pre-excited ECG appearance. We assessed the impact of this ventricular pre-excitation on left and right ventricular dys-synchrony. Methods We recruited patients who displayed both selective and non-selective His bundle pacing. We performed non-invasive epicardial electrical mapping to determine left and right ventricular activation times and patterns. Results In the primary analysis (n = 20, all patients), non-selective His bundle pacing did not prolong LVAT compared to select His bundle pacing by a pre-specified non-inferiority margin of 10ms (LVAT prolongation: -5.5ms, 95% confidence interval (CI): -0.6 to -10.4, non-inferiority p &lt; 0.0001). Non-selective His bundle pacing did not prolong right ventricular activation time (4.3ms, 95%CI: -4.0 to 12.8, p = 0.296) but did prolong QRS duration (22.1ms, 95%CI: 11.8 to 32.4, p = 0.0003). In patients with narrow intrinsic QRS (n = 6), non-selective His bundle pacing preserved left ventricular activation time (-2.9ms, 95%CI: -9.7 to 4.0, p = 0.331) but prolonged QRS duration (31.4ms, 95%CI: 22.0 to 40.7, p = 0.0003) and mean right ventricular activation time (16.8ms, 95%CI: -5.3 to 38.9, p = 0.108) compared to selective His bundle pacing. Activation pattern of the left ventricular surface was unchanged between selective and non-selective His bundle pacing. Non-selective His bundle pacing produced early basal right ventricular activation, which was not observed with selective His bundle pacing. Conclusions Compared to selective His bundle pacing, local myocardial capture during non-selective His bundle pacing produces right ventricular pre-excitation resulting in prolongation of QRS duration. However, non-selective His bundle pacing preserves the left ventricular activation time and pattern of selective His bundle pacing. When choosing between selective and non-selective His bundle pacing, left ventricular dyssynchrony is not an important factor. Abstract Figure: Selective vs Non-Selective HBP


2020 ◽  
Vol 4 (4) ◽  
pp. 1-5
Author(s):  
Yusuke Hayashi ◽  
Kenji Shimeno ◽  
Kenichi Nakatsuji ◽  
Takahiko Naruko

Abstract Background Although left bundle branch area pacing (LBBAP) can capture the His-Purkinje conduction system and create a narrower paced QRS duration, its mechanism has not been investigated. In this case report, ventricular activation patterns were evaluated using three-dimensional electroanatomical mapping during LBBAP and right ventricular septal pacing (RVSP). Case summary An 81-year-old woman with sick sinus syndrome received LBBAP, followed 4 months later with atrial fibrillation ablation. We compared ventricular activation patterns during RVSP and LBBAP using a three-dimensional electro-anatomical mapping system. Paced QRS durations during RVSP and LBBAP were 163 ms and 115 ms, respectively. The activation pattern and the total left ventricular (LV) activation time were similar during RVSP and LBBAP (86 and 73 ms, respectively), despite the conduction system capture during LBBAP. The stimulus interval to the latest LV activation point during RVSP was 117 ms, and transseptal conduction time was 31 ms (117 − 86 ms). Discussion Although LBBAP could capture the His-Purkinje conduction system, neither ventricular activation patterns nor total activation time changed dramatically. The mechanism of narrower paced QRS duration during LBBAP compared to that during RVSP can be attributable to passing over the slow transseptal conduction.


Sign in / Sign up

Export Citation Format

Share Document