Association Between Sarcomeric Variants in Hypertrophic Cardiomyopathy and Myocardial Oxygenation: Insights From a Novel Oxygen-Sensitive Cardiovascular Magnetic Resonance Approach

Circulation ◽  
2021 ◽  
Vol 144 (20) ◽  
pp. 1656-1658
Author(s):  
Betty Raman ◽  
Elizabeth M. Tunnicliffe ◽  
Kenneth Chan ◽  
Rina Ariga ◽  
Moritz Hundertmark ◽  
...  
2019 ◽  
Vol 20 (8) ◽  
pp. 932-938 ◽  
Author(s):  
Suchi Grover ◽  
Rachael Lloyd ◽  
Rebecca Perry ◽  
Pey Wen Lou ◽  
Eric Haan ◽  
...  

Abstract Aims Myocardial oxygenation is impaired in hypertrophic cardiomyopathy (HCM) patients with left ventricular hypertrophy (LVH), and possibly also in HCM gene carriers without LVH. Whether these oxygenation changes are also associated with abnormalities in diastolic function or left ventricular (LV) strain are unknown. Methods and results We evaluated 60 subjects: 20 MYBPC3 gene positive patients with LVH (G+LVH+), 18 MYBPC3 gene positive without LVH (G+LVH−), 11 gene negative siblings (G−), and 11 normal controls (NC). All subjects underwent 2D transthoracic echocardiography and cardiovascular magnetic resonance imaging for assessment of ventricular volumes, mass, and myocardial oxygenation at rest and adenosine stress using the blood oxygen level dependent (BOLD) technique. Maximal septal thickness was 20 mm in the G+LVH+ group, vs. 9 mm for the G+LVH− group. As expected, the G+LVH+ group had a more blunted myocardial oxygenation response to stress when compared with the G+LVH− group (−5% ± 3% vs. 2% ± 4%, P < 0.05), G− siblings (−5% ± 3% vs. 11% ± 4%, P < 0.0001) and NC (−5% ± 3% vs. 15% ± 4%, P < 0.0001). A blunted BOLD response to stress was also seen in G+LVH− subjects when compared with gene negative siblings (2% ± 4% vs. 11% ± 4%, P < 0.05) and NC (15% ± 4%, P < 0.050). G+LVH+ patients exhibited abnormal diastolic function including lower Eʹ, higher E to Eʹ ratio and greater left atrial area compared with the G+LVH− subjects who all had normal values for these indices. Conclusion Myocardial deoxygenation during stress is observed in MYBPC3 HCM patients, even in the presence of normal LV diastolic function, LV global longitudinal strain, and LV wall thickness.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 416
Author(s):  
Ranjit J. Shah ◽  
Sara Tommasi ◽  
Randall Faull ◽  
Jonathan M. Gleadle ◽  
Arduino A. Mangoni ◽  
...  

(1) Background: Cardiovascular disease (CVD) is the major cause of morbidity and mortality in patients with chronic kidney disease (CKD). Myocardial oxygenation and perfusion response to stress, using oxygen-sensitive cardiovascular magnetic resonance (OS-CMR) and stress T1 mapping respectively, are impaired in CKD patients with and without known coronary artery disease (CAD). Endothelial dysfunction, assessed by circulating levels of asymmetric dimethylarginine (ADMA) and homoarginine (HMA), promotes atherosclerosis. We hypothesized that in CKD patients, worsening endothelial dysfunction is associated with worsening myocardial oxygenation and perfusion as assessed by change in OS-CMR signal intensity (Δ OS-CMR SI) and stress T1 (ΔT1) values. (2) Methods: 38 patients with advanced CKD underwent cardiovascular magnetic resonance (CMR) scanning at 3 Tesla. OS-CMR and T1 mapping images were acquired both at rest and after adenosine stress and analyzed semi-quantitatively. Serum ADMA and HMA concentrations were assessed using mass spectrometry. (3) Results: There was no significant correlation between Δ OS-CMR SI and ADMA or HMA. Interestingly, there was a significant negative correlation seen between Δ T1 and ADMA (r = −0.419, p = 0.037, n = 30) but not between Δ T1 and HMA. (4) Conclusions: Stress T1 response is impaired in CKD patients and is independently associated with higher circulating ADMA concentrations.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Elizabeth W. Thompson ◽  
Srikant Kamesh Iyer ◽  
Michael P. Solomon ◽  
Zhaohuan Li ◽  
Qiang Zhang ◽  
...  

Abstract Background Hypertrophic cardiomyopathy (HCM) is characterized by increased left ventricular wall thickness, cardiomyocyte hypertrophy, and fibrosis. Adverse cardiac risk characterization has been performed using late gadolinium enhancement (LGE), native T1, and extracellular volume (ECV). Relaxation time constants are affected by background field inhomogeneity. T1ρ utilizes a spin-lock pulse to decrease the effect of unwanted relaxation. The objective of this study was to study T1ρ as compared to T1, ECV, and LGE in HCM patients. Methods HCM patients were recruited as part of the Novel Markers of Prognosis in Hypertrophic Cardiomyopathy study, and healthy controls were matched for comparison. In addition to cardiac functional imaging, subjects underwent T1 and T1ρ cardiovascular magnetic resonance imaging at short-axis positions at 1.5T. Subjects received gadolinium and underwent LGE imaging 15–20 min after injection covering the entire heart. Corresponding basal and mid short axis LGE slices were selected for comparison with T1 and T1ρ. Full-width half-maximum thresholding was used to determine the percent enhancement area in each LGE-positive slice by LGE, T1, and T1ρ. Two clinicians independently reviewed LGE images for presence or absence of enhancement. If in agreement, the image was labeled positive (LGE + +) or negative (LGE −−); otherwise, the image was labeled equivocal (LGE + −). Results In 40 HCM patients and 10 controls, T1 percent enhancement area (Spearman’s rho = 0.61, p < 1e-5) and T1ρ percent enhancement area (Spearman’s rho = 0.48, p < 0.001e-3) correlated with LGE percent enhancement area. T1 and T1ρ percent enhancement areas were also correlated (Spearman’s rho = 0.28, p = 0.047). For both T1 and T1ρ, HCM patients demonstrated significantly longer relaxation times compared to controls in each LGE category (p < 0.001 for all). HCM patients also showed significantly higher ECV compared to controls in each LGE category (p < 0.01 for all), and LGE −− slices had lower ECV than LGE + + (p = 0.01). Conclusions Hyperenhancement areas as measured by T1ρ and LGE are moderately correlated. T1, T1ρ, and ECV were elevated in HCM patients compared to controls, irrespective of the presence of LGE. These findings warrant additional studies to investigate the prognostic utility of T1ρ imaging in the evaluation of HCM patients.


Circulation ◽  
2011 ◽  
Vol 124 (1) ◽  
pp. 40-47 ◽  
Author(s):  
Martin S. Maron ◽  
Iacopo Olivotto ◽  
Caitlin Harrigan ◽  
Evan Appelbaum ◽  
C. Michael Gibson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document