scholarly journals Postischemic Neuroprotection Associated With Anti-Inflammatory Effects by Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles in Aged Mice

Stroke ◽  
2021 ◽  
Author(s):  
Chen Wang ◽  
Verena Börger ◽  
Ayan Mohamud Yusuf ◽  
Tobias Tertel ◽  
Oumaima Stambouli ◽  
...  

Background and Purpose: Small extracellular vesicles (sEVs) obtained from mesenchymal stromal cells (MSCs) were shown to induce ischemic neuroprotection in mice by modulating the brain infiltration of leukocytes and, specifically polymorphonuclear neutrophils. So far, effects of MSC-sEVs were only studied in young ischemic rodents. We herein examined the effects of MSC-sEVs in aged mice. Methods: Male and female C57Bl6/j mice (8–10 weeks or 15–24 months) were exposed to transient intraluminal middle cerebral artery occlusion. Vehicle or sEVs (equivalent of 2×10 6 MSCs) were intravenously administered. Neurological deficits, ischemic injury, blood-brain barrier integrity, brain leukocyte infiltration, and blood leukocyte responses were evaluated over up to 7 days. Results: MSC-sEV delivery reduced neurological deficits, infarct volume, brain edema, and neuronal injury in young and aged mice of both sexes, when delivered immediately postreperfusion or with 6 hours delay. MSC-sEVs decreased leukocyte and specifically polymorphonuclear neutrophil, monocyte, and macrophage infiltrates in ischemic brains of aged mice. In peripheral blood, the number of monocytes and activated T cells was significantly reduced by MSC-sEVs. Conclusions: MSC-sEVs induce postischemic neuroprotection and anti-inflammation in aged mice.

Stroke ◽  
2019 ◽  
Vol 50 (4) ◽  
pp. 1021-1025 ◽  
Author(s):  
Huachen Huang ◽  
Mohammad Iqbal H. Bhuiyan ◽  
Tong Jiang ◽  
Shanshan Song ◽  
Sandhya Shankar ◽  
...  

Background and Purpose— Inhibition of brain NKCC1 (Na + -K + -Cl − cotransporter 1) with bumetanide (BMT) is of interest in ischemic stroke therapy. However, its poor brain penetration limits the application. In this study, we investigated the efficacy of 2 novel NKCC1 inhibitors, a lipophilic BMT prodrug STS5 (2-(Dimethylamino)ethyl 3-(butylamino)-4-phenoxy-5-sulfamoyl-benzoate;hydrochloride) and a novel NKCC1 inhibitor STS66 (3-(Butylamino)-2-phenoxy-5-[(2,2,2-trifluoroethylamino)methyl]benzenesulfonamide), on reducing ischemic brain injury. Methods— Large-vessel transient ischemic stroke in normotensive C57BL/6J mice was induced with 50-min occlusion of the middle cerebral artery and reperfusion. Focal, permanent ischemic stroke in angiotensin II (Ang II)–induced hypertensive C57BL/6J mice was induced by permanent occlusion of distal branches of middle cerebral artery. A total of 206 mice were randomly assigned to receive vehicle DMSO, BMT, STS5, or STS66. Results— Poststroke BMT, STS5, or STS66 treatment significantly decreased infarct volume and cerebral swelling by ≈40% to 50% in normotensive mice after transient middle cerebral artery occlusion, but STS66-treated mice displayed better survival and sensorimotor functional recovery. STS5 treatment increased the mortality. Ang II–induced hypertensive mice exhibited increased phosphorylatory activation of SPAK (Ste20-related proline alanine-rich kinase) and NKCC1, as well as worsened infarct and neurological deficit after permanent distal middle cerebral artery occlusion. Conclusions— The novel NKCC1 inhibitor STS66 is superior to BMT and STS5 in reducing ischemic infarction, swelling, and neurological deficits in large-vessel transient ischemic stroke, as well as in permanent focal ischemic stroke with hypertension comorbidity.


2009 ◽  
Vol 297 (5) ◽  
pp. R1526-R1531 ◽  
Author(s):  
Shuzhen Chen ◽  
Guangze Li ◽  
Wenfeng Zhang ◽  
Jinju Wang ◽  
Curt D. Sigmund ◽  
...  

To investigate the role of brain angiotensin II (ANG II) in the pathogenesis of injury following ischemic stroke, mice overexpressing renin and angiotensinogen (R+A+) and their wild-type control animals (R−A−) were used for experimental ischemia studies. Focal brain ischemia was induced by middle cerebral artery occlusion (MCAO). The severity of ischemic injury was determined by measuring neurological deficits and histological damage at 24 and 48 h after MCAO, respectively. To exclude the influence of blood pressure and local collateral blood flow, brain slices were used for oxygen and glucose deprivation (OGD) studies. The severity of OGD-induced damage was determined by measuring indicators of tissue swelling and cell death, the intensity of the intrinsic optical signal (IOS), and the number of propidium iodide (PI) staining cells, respectively. Results showed 1) R+A+ mice showed higher neurological deficit score (3.8 ± 0.5 and 2.5 ± 0.3 for R+A+ and R−A−, respectively, P < 0.01) and larger infarct volume (22.2 ± 1.6% and 14.1 ± 1.2% for R+A+ and R−A−, respectively, P < 0.01); 2) The R+A+ brain slices showed more severe tissue swelling and cell death in the cortex (IOS: 140 ± 6% and 114 ± 10%; PI: 139 ± 20 cells/field and 39 ± 9 cells/field for R+A+ and R−A−, respectively, P < 0.01); 3) treatment with losartan (20 μmol/l) abolished OGD-induced exaggeration of cell injury seen in R+A+ mice. The data indicate that activation of ANG II/AT1 signaling is harmful to brain exposed to ischemia.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Fei Zhou ◽  
Jingchun Guo ◽  
Jieshi Cheng ◽  
Gencheng Wu ◽  
Jian Sun ◽  
...  

Electroacupuncture (EA) has been shown to increase cerebral blood flow (CBF) and reduce ischemic infarction in the rat model of cerebral ischemia (middle cerebral artery occlusion, MCAO). Since multiple acupoints are recommended to treat cerebral ischemia, we performed this study to investigate if there is any variation in EA protection against cerebral ischemia with the stimulation of certain “acupoints” in rats. One hour of right MCAO with an 85% reduction of blood flow induced an extensive infarction (32.9% ±3.8% of the brain), serious neurological deficits (scale = 6.0±0.5, on a scale of 0–7), and a 17% (10 out of 60) mortality. EA, with a sparse-dense wave (5 Hz/20 Hz) at 1.0 mA for 30 minutes, at Du 20 and Du 26 greatly reduced the infarction to 4.5% ±1.5% (P<0.01), significantly improved neurological deficit (scale = 1.0±0.5,P<0.01), and decreased the death rate to 7% (2 out of 30,P<0.01). Similarly, EA at left LI 11 & PC 6 reduced the infarct volume to 8.6% ±3.8% (P<0.01), improved the neurological deficit (scale = 2.0±1.0,P<0.01), and decreased the death rate to 8% (2 out of 24,P<0.01). In sharp contrast, EA at right LI 11 & PC 6 did not lead to any significant changes in the infarct volume (33.4% ±6.3%), neurological deficit (scale = 6.5±0.5), and the death rate (20%, 5 out of 24). EA at left GB 34 & SP 6, also had an inconspicuous effect on the ischemic injury. EA at Du 20 & Du 26 or at left LI 11 & PC 6 instantaneously induced a significant increase in cerebral blood flow. Neither EA at right LI 11 & PC 6 nor at GB 34 & SP 6 increased cerebral blood flow. These results revealed that the EA protection against cerebral ischemia is relatively acupoint specific.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Fei Zhou ◽  
Jingchun Guo ◽  
Jieshi Cheng ◽  
Gencheng Wu ◽  
Ying Xia

We explored the optimal duration of electroacupuncture (EA) stimulation for protecting the brain against ischemic injury. The experiments were carried out in rats exposed to right middle cerebral artery occlusion (MCAO) for 60 min followed by 24-hr reperfusion. EA was delivered to “Shuigou” (Du 26) and “Baihui” (Du 20) acupoints with sparse-dense wave (5/20 Hz) at 1.0 mA for 5, 15, 30, and 45 min, respectively. The results showed that 30 min EA, starting at 5 minutes after the onset of MCAO (EA during MCAO) or 5 minutes after reperfusion (EA after MCAO), significantly reduced ischemic infarct volume, attenuated neurological deficits, and decreased death rate with a larger reduction of the ischemic infarction in the former group. Also in the group of EA during MCAO, this protective benefit was positively proportional to the increase in the period of stimulation, that is, increased protection in response to EA from 5- to 30-min stimulation. In all groups, EA induced a significant increase in cerebral blood flow and promoted blood flow recovery after reperfusion, and both blood flow volume and blood cell velocity returned to the preischemia level in a short period of time. Surprisingly, EA for 45 min did not show reduction in the neurological deficits or the infarct volume and instead demonstrated an increase in death rate in this group. Although EA for 45 min still increased the blood flow during MCAO, it led to a worsening of perfusion after reperfusion compared to the group subjected only to ischemia. The neuroprotection induced by an “optimal” period (30 min) of EA was completely blocked by Naltrindole, aδ-opioid receptor (DOR) antagonist (10 mg/kg, i.v.). These findings suggest that earlier EA stimulation leads to better outcomes, and that EA-induced neuroprotection against ischemia depends on an optimal EA-duration via multiple pathways including DOR signaling, while “over-length” stimulation exacerbates the ischemic injury.


2021 ◽  
Vol 37 (1) ◽  
Author(s):  
Dong-Ju Park ◽  
Ju-Bin Kang ◽  
Fawad-Ali Shah ◽  
Phil-Ok Koh

Abstract Background Calcium is a critical factor involved in modulation of essential cellular functions. Parvalbumin is a calcium buffering protein that regulates intracellular calcium concentrations. It prevents rises in calcium concentrations and inhibits apoptotic processes during ischemic injury. Quercetin exerts potent antioxidant and anti-apoptotic effects during brain ischemia. We investigated whether quercetin can regulate parvalbumin expression in cerebral ischemia and glutamate toxicity-induced neuronal cell death. Adult male rats were treated with vehicle or quercetin (10 mg/kg) 30 min prior to middle cerebral artery occlusion (MCAO) and cerebral cortical tissues were collected 24 h after MCAO. We used various techniques including Western blot, reverse transcription-PCR, and immunohistochemical staining to elucidate the changes of parvalbumin expression. Results Quercetin ameliorated MCAO-induced neurological deficits and behavioral changes. Moreover, quercetin prevented MCAO-induced a decrease in parvalbumin expression. Conclusions These findings suggest that quercetin exerts a neuroprotective effect through regulation of parvalbumin expression.


2020 ◽  
Vol 11 (1) ◽  
pp. 48-59
Author(s):  
Martin Juenemann ◽  
Tobias Braun ◽  
Nadine Schleicher ◽  
Mesut Yeniguen ◽  
Patrick Schramm ◽  
...  

AbstractObjectiveThis study was designed to investigate the indirect neuroprotective properties of recombinant human erythropoietin (rhEPO) pretreatment in a rat model of transient middle cerebral artery occlusion (MCAO).MethodsOne hundred and ten male Wistar rats were randomly assigned to four groups receiving either 5,000 IU/kg rhEPO intravenously or saline 15 minutes prior to MCAO and bilateral craniectomy or sham craniectomy. Bilateral craniectomy aimed at elimination of the space-consuming effect of postischemic edema. Diagnostic workup included neurological examination, assessment of infarct size and cerebral edema by magnetic resonance imaging, wet–dry technique, and quantification of hemispheric and local cerebral blood flow (CBF) by flat-panel volumetric computed tomography.ResultsIn the absence of craniectomy, EPO pretreatment led to a significant reduction in infarct volume (34.83 ± 9.84% vs. 25.28 ± 7.03%; p = 0.022) and midline shift (0.114 ± 0.023 cm vs. 0.083 ± 0.027 cm; p = 0.013). We observed a significant increase in regional CBF in cortical areas of the ischemic infarct (72.29 ± 24.00% vs. 105.53 ± 33.10%; p = 0.043) but not the whole hemispheres. Infarct size-independent parameters could not demonstrate a statistically significant reduction in cerebral edema with EPO treatment.ConclusionsSingle-dose pretreatment with rhEPO 5,000 IU/kg significantly reduces ischemic lesion volume and increases local CBF in penumbral areas of ischemia 24 h after transient MCAO in rats. Data suggest indirect neuroprotection from edema and the resultant pressure-reducing and blood flow-increasing effects mediated by EPO.


2002 ◽  
Vol 283 (3) ◽  
pp. H1005-H1011 ◽  
Author(s):  
Katsuyoshi Shimizu ◽  
Zsombor Lacza ◽  
Nishadi Rajapakse ◽  
Takashi Horiguchi ◽  
James Snipes ◽  
...  

We investigated effects of diazoxide, a selective opener of mitochondrial ATP-sensitive K+ (mitoKATP) channels, against brain damage after middle cerebral artery occlusion (MCAO) in male Wistar rats. Diazoxide (0.4 or 2 mM in 30 μl saline) or saline (sham) was infused into the right lateral ventricle 15 min before MCAO. Neurological score was improved 24 h later in the animals treated with 2 mM diazoxide (13.8 ± 0.7, n = 13) compared with sham treatment (9.5 ± 0.2, n = 6, P < 0.01). The total percent infarct volume (MCAO vs. contralateral side) of sham treatment animals was 43.6 ± 3.6% ( n = 12). Treatment with 2 mM diazoxide reduced the infarct volume to 20.9 ± 4.8% ( n = 13, P < 0.05). Effects of diazoxide were prominent in the cerebral cortex. The protective effect of diazoxide was completely prevented by the pretreatment with 5-hydroxydecanoate (100 mM in 10 μl saline), a selective blocker of mitoKATP channels ( n = 6). These results indicate that selective opening of the mitoKATP channel has neuroprotective effects against ischemia-reperfusion injury in the rat brain.


2021 ◽  
pp. 0271678X2199298
Author(s):  
Chao Li ◽  
Chunyang Wang ◽  
Yi Zhang ◽  
Owais K Alsrouji ◽  
Alex B Chebl ◽  
...  

Treatment of patients with cerebral large vessel occlusion with thrombectomy and tissue plasminogen activator (tPA) leads to incomplete reperfusion. Using rat models of embolic and transient middle cerebral artery occlusion (eMCAO and tMCAO), we investigated the effect on stroke outcomes of small extracellular vesicles (sEVs) derived from rat cerebral endothelial cells (CEC-sEVs) in combination with tPA (CEC-sEVs/tPA) as a treatment of eMCAO and tMCAO in rat. The effect of sEVs derived from clots acquired from patients who had undergone mechanical thrombectomy on healthy human CEC permeability was also evaluated. CEC-sEVs/tPA administered 4 h after eMCAO reduced infarct volume by ∼36%, increased recanalization of the occluded MCA, enhanced cerebral blood flow (CBF), and reduced blood-brain barrier (BBB) leakage. Treatment with CEC-sEVs given upon reperfusion after 2 h tMCAO significantly reduced infarct volume by ∼43%, and neurological outcomes were improved in both CEC-sEVs treated models. CEC-sEVs/tPA reduced a network of microRNAs (miRs) and proteins that mediate thrombosis, coagulation, and inflammation. Patient-clot derived sEVs increased CEC permeability, which was reduced by CEC-sEVs. CEC-sEV mediated suppression of a network of pro-thrombotic, -coagulant, and -inflammatory miRs and proteins likely contribute to therapeutic effects. Thus, CEC-sEVs have a therapeutic effect on acute ischemic stroke by reducing neurovascular damage.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Kevin B Koronowski ◽  
Isa Saul ◽  
Zachary Balmuth-Loris ◽  
Miguel Perez-Pinzon

Introduction: Our previous work demonstrates that resveratrol, a naturally occurring polyphenol, protects against cerebral ischemia when administered 2 or 14 days prior to injury. Resveratrol activates Sirt1, an NAD + -dependent deacylase that regulates cellular metabolism. It has been postulated that neuronal Sirt1 directly mediates this neuroprotection but it remains to be empirically tested. Objective: The objective of this study was to generate an inducible, neuronal-specific Sirt1 knockout mouse and determine whether neuronal Sirt1 is necessary for resveratrol-induced ischemic tolerance. Methods: Twenty to twenty-five gram neuronal-specific Sirt1 knockout mice (Sirt1neu-/-) and WTs were induced with tamoxifen. Mice were randomized for 1) western blot; 2) resveratrol preconditioning (RPC; 10 mg/kg resveratrol i.p.) or vehicle (1.5% DMSO; 0.9% saline) treatment 2 days prior to 60 minute middle cerebral artery occlusion (MCAo); 3) untargeted primary metabolomics by GC-TOF-MS; or 4) transcription factor activation profiling. Twenty-four hours following MCAo, neurological score was used to assess functional outcome and infarct volume was quantified by TTC staining. Results: Tamoxifen treatment removed WT Sirt1 protein from major brain regions but not from heart (Figure 1A, n=3). In WT, RPC reduced infarct volume by 43.7% and improved neurological score by nearly 3 points, however these effects were lost in Sirt1neu-/- (Figure 1B, n=5-9). Compared to WT, metabolic profiles from Sirt1neu-/- displayed significantly altered glycolysis metabolites (Figure 1C, n=8). Activation of hypoxia inducible factor (HIF) was reduced by 48% in Sirt1neu-/- (Figure 1D, n=3). Conclusions: We generated and utilized an inducible, neuronal-specific knockout mouse to demonstrate that neuronal Sirt1 specifically is required for RPC-induced ischemic tolerance. Additionally, Sirt1 regulates glycolysis in the brain, possibly through its interaction with HIF.


Stroke ◽  
2012 ◽  
Vol 43 (suppl_1) ◽  
Author(s):  
Gregory Christoforidis ◽  
Cameron Rink ◽  
Nitn Garg ◽  
Shahid Khan ◽  
Chandan Sen

Objective: In order to assess the impact of reperfusion on the degree of subsequent cerebral edema following cerebral ischemia, this work sought to compare 24 hour infarct volume progression between permanent and transient middle cerebral artery occlusion (MCAO) in a canine model. Methods: Using a previously published endovascular transient MCAO method, 5 mongrel canines underwent 1-hour transient MCAO and 5 underwent permanent MCAO. Model parameters were altered to result in varying infarct volumes. Magnetic resonanace imaging (MRI) (3T Achieva, Philips) was performed one hour and 24 hours following reperfusion as well as 60 minutes following permanent occlusion. Infarct volumes were calculated using a previously published threshold technique by two observers using 1 hour mean diffusivity (MD) maps and 24hour FLAIR MRI. Reproducibility was assessed using Bland-Altman statistic. Average infarct volumes between the observers were calculated. Bivariate linear fit analysis were used to assess the correlation between immediate and 24 hours infarct volume determinations. Results: R square (r2) for linear fit was 0.964 (p=0.0005) for permanent occlusion and 0.971 (p= 0.0022) for transient occlusion ( figure 1 ). The infarct volumes measured at 1 hour increased by a factor of 1.42 relative to 24 hour infarct volumes for permanent occlusion and 2.05 for transient occlusion. Bland-Altman statistic indicates that reproducibility using the MD maps (15.9%) and FLAIR images (13.3%) is not substantially different. None of the animals demonstrated hemorrhagic conversion by 24 hours. Conclusion: MD maps generated one hour post reperfusion following transient and permanent MCAO in a canine model can serve as a reliable assessment for infarct volume determination. Increase in infarct volume at 24 hours, presumably due to vasogenic edema, was greater in reperfused infarctions than with permanent occlusion. Figure 1: Bivariate linear fit analysis comparing immediate and 24-hour infarct volume calculations for permanent and transient occlusions.


Sign in / Sign up

Export Citation Format

Share Document