scholarly journals Population Dynamics of Early Visual Cortex during Working Memory

2018 ◽  
Vol 30 (2) ◽  
pp. 219-233 ◽  
Author(s):  
Masih Rahmati ◽  
Golbarg T. Saber ◽  
Clayton E. Curtis

Although the content of working memory (WM) can be decoded from the spatial patterns of brain activity in early visual cortex, how populations encode WM representations remains unclear. Here, we address this limitation by using a model-based approach that reconstructs the feature encoded by population activity measured with fMRI. Using this approach, we could successfully reconstruct the locations of memory-guided saccade goals based on the pattern of activity in visual cortex during a memory delay. We could reconstruct the saccade goal even when we dissociated the visual stimulus from the saccade goal using a memory-guided antisaccade procedure. By comparing the spatiotemporal population dynamics, we find that the representations in visual cortex are stable but can also evolve from a representation of a remembered visual stimulus to a prospective goal. Moreover, because the representation of the antisaccade goal cannot be the result of bottom–up visual stimulation, it must be evoked by top–down signals presumably originating from frontal and/or parietal cortex. Indeed, we find that trial-by-trial fluctuations in delay period activity in frontal and parietal cortex correlate with the precision with which our model reconstructed the maintained saccade goal based on the pattern of activity in visual cortex. Therefore, the population dynamics in visual cortex encode WM representations, and these representations can be sculpted by top–down signals from frontal and parietal cortex.

2020 ◽  
Author(s):  
Munendo Fujimichi ◽  
Hiroki Yamamoto ◽  
Jun Saiki

Are visual representations in the human early visual cortex necessary for visual working memory (VWM)? Previous studies suggest that VWM is underpinned by distributed representations across several brain regions, including the early visual cortex. Notably, in these studies, participants had to memorize images under consistent visual conditions. However, in our daily lives, we must retain the essential visual properties of objects despite changes in illumination or viewpoint. The role of brain regions—particularly the early visual cortices—in these situations remains unclear. The present study investigated whether the early visual cortex was essential for achieving stable VWM. Focusing on VWM for object surface properties, we conducted fMRI experiments while male and female participants performed a delayed roughness discrimination task in which sample and probe spheres were presented under varying illumination. By applying multi-voxel pattern analysis to brain activity in regions of interest, we found that the ventral visual cortex and intraparietal sulcus were involved in roughness VWM under changing illumination conditions. In contrast, VWM was not supported as robustly by the early visual cortex. These findings show that visual representations in the early visual cortex alone are insufficient for the robust roughness VWM representation required during changes in illumination.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Timo van Kerkoerle ◽  
Matthew W. Self ◽  
Pieter R. Roelfsema

Abstract Neuronal activity in early visual cortex depends on attention shifts but the contribution to working memory has remained unclear. Here, we examine neuronal activity in the different layers of the primary visual cortex (V1) in an attention-demanding and a working memory task. A current-source density analysis reveales top-down inputs in the superficial layers and layer 5, and an increase in neuronal firing rates most pronounced in the superficial and deep layers and weaker in input layer 4. This increased activity is strongest in the attention task but it is also highly reliable during working memory delays. A visual mask erases the V1 memory activity, but it reappeares at a later point in time. These results provide new insights in the laminar circuits involved in the top-down modulation of activity in early visual cortex in the presence and absence of visual stimuli.


2019 ◽  
Author(s):  
Tao He ◽  
Matthias Ekman ◽  
Annelinde R.E. Vandenbroucke ◽  
Floris P. de Lange

ABSTRACTIt has been suggested that our visual system does not only process stimuli that are directly available to our eyes, but also has a role in maintaining information in VWM over a period of seconds. It remains unclear however what happens to VWM representations in the visual system when we make saccades. Here, we tested the hypothesis that VWM representations are remapped within the visual system after making saccades. We directly compared the content of VWM for saccade and no-saccade conditions using MVPA of delay-related activity measured with fMRI. We found that when participants did not make a saccade, VWM representations were robustly present in contralateral early visual cortex. When making a saccade, VWM representations degraded in contralateral V1-V3 after the saccade shifted the location of the remembered grating to the opposite visual field. However, contrary to our hypothesis we found no evidence for the representations of the remembered grating at the saccadic target location in the opposite visual field, suggesting that there is no evidence for remapping of VWM in early visual cortex. Interestingly, IPS showed persistent VWM representations in both the saccade and no-saccade condition. Together, our results indicate that VWM representations in early visual cortex are not remapped across eye movements, potentially limiting the role of early visual cortex in VWM storage.HighlightsVisual working memory (VWM) representations do not remap after making saccadesEye movement degrade VWM representations in early visual cortex, limiting the role of early visual cortex in VWM storageParietal cortex shows persistent VWM representations across saccades


2011 ◽  
Vol 23 (8) ◽  
pp. 1921-1934 ◽  
Author(s):  
Claire Sergent ◽  
Christian C. Ruff ◽  
Antoine Barbot ◽  
Jon Driver ◽  
Geraint Rees

Modulations of sensory processing in early visual areas are thought to play an important role in conscious perception. To date, most empirical studies focused on effects occurring before or during visual presentation. By contrast, several emerging theories postulate that sensory processing and conscious visual perception may also crucially depend on late top–down influences, potentially arising after a visual display. To provide a direct test of this, we performed an fMRI study using a postcued report procedure. The ability to report a target at a specific spatial location in a visual display can be enhanced behaviorally by symbolic auditory postcues presented shortly after that display. Here we showed that such auditory postcues can enhance target-specific signals in early human visual cortex (V1 and V2). For postcues presented 200 msec after stimulus termination, this target-specific enhancement in visual cortex was specifically associated with correct conscious report. The strength of this modulation predicted individual levels of performance in behavior. By contrast, although later postcues presented 1000 msec after stimulus termination had some impact on activity in early visual cortex, this modulation no longer related to conscious report. These results demonstrate that within a critical time window of a few hundred milliseconds after a visual stimulus has disappeared, successful conscious report of that stimulus still relates to the strength of top–down modulation in early visual cortex. We suggest that, within this critical time window, sensory representation of a visual stimulus is still under construction and so can still be flexibly influenced by top–down modulatory processes.


Author(s):  
Fanhua Guo ◽  
Chengwen Liu ◽  
Chencan Qian ◽  
Zihao Zhang ◽  
Kaibao Sun ◽  
...  

AbstractAttention mechanisms at different cortical layers of human visual cortex remain poorly understood. Using submillimeter-resolution fMRI at 7T, we investigated the effects of top-down spatial attention on the contrast responses across different cortical depths in human early visual cortex. Gradient echo (GE) T2* weighted BOLD signal showed an additive effect of attention on contrast responses across cortical depths. Compared to the middle cortical depth, attention modulation was stronger in the superficial and deep depths of V1, and also stronger in the superficial depth of V2 and V3. Using ultra-high resolution (0.3mm in-plane) balanced steady-state free precession (bSSFP) fMRI, a multiplicative scaling effect of attention was found in the superficial and deep layers, but not in the middle layer of V1. Attention modulation of low contrast response was strongest in the middle cortical depths, indicating baseline enhancement or contrast gain of attention modulation on feedforward input. Finally, the additive effect of attention on T2* BOLD can be explained by strong nonlinearity of BOLD signals from large blood vessels, suggesting multiplicative effect of attention on neural activity. These findings support that top-down spatial attention mainly operates through feedback connections from higher order cortical areas, and a distinct mechanism of attention may also be associated with feedforward input through subcortical pathway.HighlightsResponse or activity gain of spatial attention in superficial and deep layersContrast gain or baseline shift of attention in V1 middle layerNonlinearity of large blood vessel causes additive effect of attention on T2* BOLD


2013 ◽  
Vol 13 (9) ◽  
pp. 1349-1349
Author(s):  
J. Bergmann ◽  
E. Genc ◽  
A. Kohler ◽  
W. Singer ◽  
J. Pearson

2021 ◽  
pp. 1-16
Author(s):  
Qing Yu ◽  
Bradley R. Postle

Abstract Humans can construct rich subjective experience even when no information is available in the external world. Here, we investigated the neural representation of purely internally generated stimulus-like information during visual working memory. Participants performed delayed recall of oriented gratings embedded in noise with varying contrast during fMRI scanning. Their trialwise behavioral responses provided an estimate of their mental representation of the to-be-reported orientation. We used multivariate inverted encoding models to reconstruct the neural representations of orientation in reference to the response. We found that response orientation could be successfully reconstructed from activity in early visual cortex, even on 0% contrast trials when no orientation information was actually presented, suggesting the existence of a purely internally generated neural code in early visual cortex. In addition, cross-generalization and multidimensional scaling analyses demonstrated that information derived from internal sources was represented differently from typical working memory representations, which receive influences from both external and internal sources. Similar results were also observed in intraparietal sulcus, with slightly different cross-generalization patterns. These results suggest a potential mechanism for how externally driven and internally generated information is maintained in working memory.


2021 ◽  
Author(s):  
Ye Li ◽  
William Bosking ◽  
Michael S Beauchamp ◽  
Sameer A Sheth ◽  
Daniel Yoshor ◽  
...  

Narrowband gamma oscillations (NBG: ~20-60Hz) in visual cortex reflect rhythmic fluctuations in population activity generated by underlying circuits tuned for stimulus location, orientation, and color. Consequently, the amplitude and frequency of induced NBG activity is highly sensitive to these stimulus features. For example, in the non-human primate, NBG displays biases in orientation and color tuning at the population level. Such biases may relate to recent reports describing the large-scale organization of single-cell orientation and color tuning in visual cortex, thus providing a potential bridge between measurements made at different scales. Similar biases in NBG population tuning have been predicted to exist in the human visual cortex, but this has yet to be fully examined. Using intracranial recordings from human visual cortex, we investigated the tuning of NBG to orientation and color, both independently and in conjunction. NBG was shown to display a cardinal orientation bias (horizontal) and also an end- and mid-spectral color bias (red/blue and green). When jointly probed, the cardinal bias for orientation was attenuated and an end-spectral preference for red and blue predominated. These data both elaborate on the close, yet complex, link between the population dynamics driving NBG oscillations and known feature selectivity biases in visual cortex, adding to a growing set of stimulus dependencies associated with the genesis of NBG. Together, these two factors may provide a fruitful testing ground for examining multi-scale models of brain activity, and impose new constraints on the functional significance of the visual gamma rhythm.


2019 ◽  
Vol 19 (10) ◽  
pp. 169
Author(s):  
Peng Zhang ◽  
Chengwen Liu ◽  
chencan Qian ◽  
Zihao Zhang ◽  
Sheng He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document