The occurrence and structure of radial sieve tubes in the secondary xylem of Aquilaria and Gyrinops

IAWA Journal ◽  
2020 ◽  
Vol 41 (1) ◽  
pp. 109-124 ◽  
Author(s):  
Bei Luo ◽  
Tomoya Imai ◽  
Junji Sugiyama ◽  
Sri Nugroho Marsoem ◽  
Tri Mulyaningsih ◽  
...  

Abstract New observations of radial sieve tubes in the secondary xylem of two genera and four species of agarwood — Aquilaria sinensis, A. crasna, A. malaccensis and Gyrinops versteeghii (Thymelaeaceae) — are presented in this study. The earliest radial sieve tubes in Gyrinops are formed in the secondary xylem adjacent to the pith. The radial sieve tubes originate from the vascular cambium and develop in both uniseriate and multiseriate ray tissue. In addition to sieve plates in lateral and end walls, scattered or clustered minute sieve pores are localized in the lateral wall of radial sieve tubes. There is a direct connection between radial sieve tubes in ray tissue and axial sieve tubes in interxylary phloem strands (IP), such as (i) connection by bending of radial sieve tube strands, (ii) connection of two IP strands by an oblique bridge, and (iii) connection of two IP strands at a right angle. The average number of radial sieve tubes and interxylary phloem was found to be 1.7 per mm3 and 9.1 per mm2 in the secondary xylem. Considering the higher frequency of radial sieve tubes with the increasing thickness of the secondary xylem, the direct connections between radial and axial sieve tubes could play a significant role in assisting the translocation of metabolites in Aquilaria and Gyrinops.

IAWA Journal ◽  
2019 ◽  
Vol 40 (1) ◽  
pp. 23-42
Author(s):  
Bei Luo ◽  
Tomoya Imai ◽  
Junji Sugiyama ◽  
Jian Qiu

ABSTRACT Agarwoods such as Aquilaria spp. and Gyrinops spp. (Thymelaeaceae) produce interxylary phloem in their secondary xylem and intraxylary phloem at the periphery of the pith, facing the primary xylem. We studied young shoots of Aquilaria sinensis and characterized the development of its intraxylary phloem. It was initiated by the division of parenchyma cells localized in the outer parts of the ground meristem immediately following the maturation of first-formed primary xylem. Its nascent sieve plates bore donut-like structures, the individual pores of which were so small (less than 0.1 μm) that they were hardly visible under FE-SEM. Intraxylary phloem developed into mature tissue by means of the division and proliferation of parenchyma cells. During the shoots’ active growth period, the sieve pore sizes were 0.1–0.5 μm, with tubular elements passing through them. In the maturation stage, large clusters of sieve tubes continued to be differentiated in the intraxylary phloem. In the partial senescence stage observed in a three-centimeter-diameter branch, intraxylary phloem cells in the adaxial part became crushed, and sieve plates had pores over 1–2 μm in diameter without any callose deposition. Before and after the differentiation of interxylary phloem in the first and second internodes, callose staining detected more than twice as many sieve tubes in intraxylary phloem than in external phloem. However, after differentiation of interxylary phloem in the eleventh internode, more sieve tubes were found in interxylary phloem than in intraxylary and external phloem. This suggests that prior to the initiation of interxylary phloem intraxylary phloem acts as the principal phloem. After its differentiation, however, interxylary phloem takes over the role of principal phloem. Interxylary phloem thus acts as the predominant phloem in the translocation of photosynthates in Aquilaria sinensis.


IAWA Journal ◽  
2018 ◽  
Vol 39 (1) ◽  
pp. 3-17 ◽  
Author(s):  
Bei Luo ◽  
Yeling Ou ◽  
Biao Pan ◽  
Jian Qiu ◽  
Takao Itoh

The structure and development of interxylary phloem (IP) and external phloem in Aquilaria sinensis were investigated using light and scanning electron microscopy. Complete IP strands were isolated, measuring 14 ± 4 mm in length and 417 ± 124 μm in width. The outer margin of IP was composed of two to three layers of fusiform parenchyma cells. The development of IP can be divided into five stages: 1) Locally IP starts its differentiation within a small segment of a broad cambial zone, at the cost of xylem differentiation. 2) Inward growth of IP advances, and fibres and sieve tubes differentiate. 3) IP is constricted by the encroachment of immature xylem cells between cambium and immature IP. 4) IP is isolated from the cambium and surrounded by immature, non-lignified xylem tissue. 5) IP is surrounded by lignified xylem tissue, and the fibres within IP become lignified.In all the phloem islands in a ten-year-old stem, sieve elements showed positive staining of callose with aniline blue. However, no staining of callose was observed in the external secondary phloem of agarwood trees collected from two different sites. No sieve tubes or sieve pores were detected by SEM observation of numerous serial cross and radial sections of the external phloem. We therefore conclude that sieve tubes are absent from the external phloem or extremely rare and that the transport of photosynthetic products in the stem of A. sinensis takes place in the interxylary phloem.


IAWA Journal ◽  
2021 ◽  
pp. 1-16
Author(s):  
Bei Luo ◽  
Arata Yoshinaga ◽  
Tatsuya Awano ◽  
Keiji Takabe ◽  
Takao Itoh

Abstract We studied the time-course of stem response for six months following complete girdling in branches of Aquilaria sinensis to determine the potential role of interxylary phloem (IP) in this response. It was found that the vascular cambium, as well as its derivative secondary xylem and phloem, regenerated fully through redifferentiation of IP. We confirmed that vascular cambium regenerated within one month after girdling based on observation of new vessels, IP, and secondary phloem fibers. The time-course study showed that IPs made connections with each other, merged, and became larger through the proliferation of IPs parenchyma cells and the cleaving of secondary xylem in a narrow zone 400 to 1000 μm deep inside the girdled edge. This led to the formation of a complete circular sheath of vascular cambium, followed by the regeneration of vascular tissue. It is worth noting that the secondary xylem is regenerated always following the formation of a thick belt of wound xylem.


IAWA Journal ◽  
1991 ◽  
Vol 12 (3) ◽  
pp. 223-234 ◽  
Author(s):  
Roni Aloni ◽  
Carol A. Peterson

The secondary phloem of Vitis vinifera L. is characterised by a radial gradient of sieve tube diameters. Sieve tubes maturing early in the growing season have the largest diameters; those maturing late in the season have the smallest. In early spring, masses of winter dormancy callose are gradually digested in a polar radial pattern, proceeding outwards from the cambium. The fluorescent dye, fluorescein, was used to detect translocation in sieve tubes. During spring, dye translocation was first observed in the wider sieve tubes produced near the end of the previous year and wh ich had reduced amounts of callose. But translocation was not observed in the very narrow sieve tubes formed at the end of the year although they were the first to be callose free. The reactivated sieve tubes functioned for about one month. New sieve tubes differentiated three weeks after dormancy callose breakdown and started to function about one week later, so that the transition of translocation activity from the sieve tubes of the previous year to those of the current year is relatively rapid. The sieve tubes formed toward the end of the growing season (but not the narrowest ones formed at the very end of the season) function during parts of two successive seasons, while the sieve tubes forrned early in the season usually function during the first year only. Callose amounts increase gradually during summer in both the old and new sieve tubes and become relatively heavy in the old ones. At this developmental stage, translocation occurs through young sieve plates with relatively high callose deposits.


Plants ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 25 ◽  
Author(s):  
Lothar Kalmbach ◽  
Ykä Helariutta

Sieve pores of the sieve plates connect neighboring sieve elements to form the conducting sieve tubes of the phloem. Sieve pores are critical for phloem function. From the 1950s onwards, when electron microscopes became increasingly available, the study of their formation had been a pillar of phloem research. More recent work on sieve elements instead has largely focused on sieve tube hydraulics, phylogeny, and eco-physiology. Additionally, advanced molecular and genetic tools available for the model species Arabidopsis thaliana helped decipher several key regulatory mechanisms of early phloem development. Yet, the downstream differentiation processes which form the conductive sieve tube are still largely unknown, and our understanding of sieve pore formation has only moderately progressed. Here, we summarize our current knowledge on sieve pore formation and present relevant recent advances in related fields such as sieve element evolution, physiology, and plasmodesmata formation.


1967 ◽  
Vol 32 (1) ◽  
pp. 71-87 ◽  
Author(s):  
K. Esau ◽  
J. Cronshaw ◽  
L. L. Hoefert

In minor veins of leaves of Beta vulgaris L. (sugar beet) yellows virus particles were found both in parenchyma cells and in mature sieve elements. In parenchyma cells the particles were usually confined to the cytoplasm, that is, they were absent from the vacuoles. In the sieve elements, which at maturity have no vacuoles, the particles were scattered throughout the cell. In dense aggregations the particles tended to assume an orderly arrangement in both parenchyma cells and sieve elements. Most of the sieve elements containing virus particles had mitochondria, plastids, endoplasmic reticulum, and plasma membrane normal for mature sieve elements. Some sieve elements, however, showed evidence of degeneration. Virus particles were present also in the pores of the sieve plates, the plasmodesmata connecting the sieve elements with parenchyma cells, and the plasmodesmata between parenchyma cells. The distribution of the virus particles in the phloem of Beta is compatible with the concept that plant viruses move through the phloem in the sieve tubes and that this movement is a passive transport by mass flow. The observations also indicate that the beet yellows virus moves from cell to cell and in the sieve tube in the form of complete particles, and that this movement may occur through sieve-plate pores in the sieve tube and through plasmodesmata elsewhere.


1983 ◽  
Vol 10 (6) ◽  
pp. 561 ◽  
Author(s):  
J Kallarackal ◽  
JA Milburn

Fruit stalks of R. communis were made to exude phloem sap by repeated slicing at intervals of a few minutes. Samples 1 mm thick from the fruit stalks were fixed for electron microscopy. Samples were also fixed and processed for electron microscopy from previously intact (non-exuding) fruit stalks. Examination of the sieve tubes from these two different samples showed predominantly open sieve-plate pores in the exuding fruit stalk. The sieve plates of the non-exuding fruit stalk showed occlusion of the sieve-plate pores by P-protein. The starch grains from the broken plastids also had characteristic distributions. The implications of these observations are discussed in relation to comprehending the mechanism by which sieve-plate pores become choked, and so sealing the sieve-tube system as a result of injury.


1981 ◽  
Vol 59 (9) ◽  
pp. 1749-1760
Author(s):  
Thompson Demetrio Pizzolato ◽  
David L. Regehr

Anatomical changes induced in the first internode by an aqueous spray of 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB) (0.56 kg acid equivalent per hectare) confirmed the intolerance of tomato to this herbicide. Hypertrophy, hyperplasia, and plastid destruction occurred rapidly in most tissues. Many of the hyperplastic phloem cells differentiated into unusual supernumerary sieve tube members which were shorter and narrower than normal and which approximated the size of the co-differentiating companion cells. The supernumerary sieve tube members usually possessed several sieve plates and formed sieve tubes which did not follow a vertical course. Although obliteration of the supernumerary sieve tube members was stimulated, it was not associated with the formation of necrotic masses. Secondary wall formation was prevented in the protophloem fibers which became multiseptate following the stimulation of mitoses. The cambial initials were converted into a tissue of squat cells with little organization. Xylem which differentiated after treatment lost its normal heterogeneity and became a tissue of squat tracheary elements and parenchyma with scanty secondary thickening resembling wound xylem. Included phloem differentiated from parenchymatous masses within the xylem, and tylosis formation was stimulated. Pith volume increased by hypertrophy unaccompanied by hyperplasia. Although protophloem fibers did not mature in the internal phloem and limited hyperplasia and hypertrophy did occur, the internal phloem was much less affected than the external. Similarities between the anatomical effects of 2,4-DB and those reported for certain growth regulators and pathogens were noted.


Author(s):  
Shaoshuai Liu ◽  
Maria Jose Ladera-Carmona ◽  
Minna M. Poranen ◽  
Aart J. E. van Bel ◽  
Karl-Heinz Kogel ◽  
...  

AbstractMacrophage migration inhibitory factors (MIFs) are multifunctional proteins regulating major processes in mammals, including activation of innate immune responses. In invertebrates, MIF proteins participate in the modulation of host immune responses when secreted by parasitic organisms, such as aphids. In this study, we assessed the possibility to use MIF genes as targets for RNA interference (RNAi)-based control of the grain aphid Sitobion avenae (Sa) on barley (Hordeum vulgare). When nymphs were fed on artificial diet containing double-stranded (ds)RNAs (SaMIF-dsRNAs) that target sequences of the three MIF genes SaMIF1, SaMIF2 and SaMIF3, they showed higher mortality rates and these rates correlated with reduced MIF transcript levels as compared to the aphids feeding on artificial diet containing a control dsRNA (GFP-dsRNA). Comparison of different feeding strategies showed that nymphs’ survival was not altered when they fed from barley seedlings sprayed with naked SaMIF-dsRNAs, suggesting they did not effectively take up dsRNA from the sieve tubes of these plants. Furthermore, aphids’ survival was also not affected when the nymphs fed on leaves supplied with dsRNA via basal cut ends of barley leaves. Consistent with this finding, the use of sieve tube-specific YFP-labeled Arabidopsis reporter lines confirmed that fluorescent 21 nt dsRNACy3, when supplied via petioles or spraying, co-localized with xylem structures, but not with phloem tissue. Our results suggest that MIF genes are a potential target for insect control and also imply that application of naked dsRNA to plants for aphid control is inefficient. More efforts should be put into the development of effective dsRNA formulations.


IAWA Journal ◽  
2000 ◽  
Vol 21 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Teresa Quilhó ◽  
Helena Pereira ◽  
Hans Georg Richter

The axial variation of bark thickness and quantitative anatomical features of Eucalyptus globulus bark were analysed for one site based on individual measurements of ten 15-year-old trees at six height levels (DBH, 5%, 15%, 35%, 55% and 75% of total tree height). The parameters studied were: length, tangential diameter and percentage of sieve tubes; length, width, cell wall thickness and percentage of fibres; height and percentage of rays; percentage of sclereids in the secondary phloem. Bark thickness decreases from base to top of the tree. Fibre width and wall thickness decrease from base upwards. No distinct axial patterns of variation were observed for the other biometric variables studied. Parenchyma is the main cell type of the bark (50%) followed by fibres (27.9%), rays (12.1%), sieve tubes (2.7%), and sclereids (7.3%). The cell type proportions vary significantly within the tree, i.e., parenchyma, ray and sclereid proportions decrease, fibre and sieve tube proportions increase towards the top of the tree.


Sign in / Sign up

Export Citation Format

Share Document