Nuclear ITS/ETS sequence data indicate the membership of Senecio racemulifer, but not S. acutipinnus and S. graciliflorus, within the genus Jacobaea (Asteraceae, Senecioneae)

Phytotaxa ◽  
2021 ◽  
Vol 512 (3) ◽  
Author(s):  
WEN-QUN FEI ◽  
HUI-MIN LI ◽  
CHEN REN ◽  
QIN-ER YANG

The sectional placement of Senecio racemulifer (Asteraceae, Senecioneae) and the generic affiliation of S. acutipinnus and S. graciliflorus have been in dispute. Senecio racemulifer was tentatively considered a member of S. sect. Doria, and S. acutipinnus and S. graciliflorus were transferred to the genus Jacobaea as J. acutipinna and J. graciliflora, respectively. Our phylogenetic analyses based on nuclear ITS/ETS sequences indicate that S. racemulifer is deeply nested with Jacobaea species in a well-supported clade while S. acutipinnus and S. graciliflorus are nested with other Senecio species in a well-supported clade. We therefore transfer S. racemulifer to Jacobaea as J. racemulifera but retain S. acutipinnus and S. graciliflorus within Senecio. The names Jacobaea acutipinna, J. graciliflora, J. sect. Graciliflorae and S. ser. Racemuliferae are all synonymized. Karyological characters are reported for the three species. Jacobaea racemulifera, earlier known from the Western Tian-Shan (Kazakhstan, Kyrgyzstan, Uzbekistan), is reported here as new to China.

2014 ◽  
Vol 62 (3) ◽  
pp. 235 ◽  
Author(s):  
S. Safaei Chaei Kar ◽  
F. Ghanavati ◽  
M. R. Naghavi ◽  
H. Amirabadi-zade ◽  
R. Rabiee

Onobrychis, comprising more than 130 species, is a genus of the family Fabaceae. At this time, the interspecies relationship of this biologically important genus is still a subject of great discussion and debate. To help resolve this disagreement, we used molecular phylogeny to analyse internal transcribed spacer (ITS) and trnL–trnF sequences of 76 species of Onobrychis. Bayesian interference, maximum parsimony and maximum likelihood analyses of nuclear ITS and plastid trnL–trnF DNA sequence data generated trees with strong posterior probability for two groups: Onobrychis subgen. Sisyrosema (including: Heliobrychis, Hymenobrychis, Afghanicae and Anthyllium sections) along with Laxiflorae section in Group I and Onobrychis subgen. Onobrychis (except Laxiflorae section) in the other (Group II). The Laxiflorae section roots back to the ancestral node for Sisyrosema subgen. O. viciifolia (cultivated species), which is closely associated with O. cyri var. cyri, suggesting that the latter may be a wild progenitor of O. viciifolia. The present study supported the paraphyly of subgenera Onobrychis and Sisyrosema. The study proposed the paraphyletic nature of the sections Onobrychis, Dendrobrychis, Heliobrychis and Hymenobrychis. Together with our molecular phylogenetic analyses we present a review of Onobrychis morphology and discuss and compare our results with those of earlier morphological and molecular phylogenetic analyses.


Phytotaxa ◽  
2017 ◽  
Vol 323 (1) ◽  
pp. 27 ◽  
Author(s):  
VLADIMIR E. FEDOSOV ◽  
ALINA V. FEDOROVA ◽  
ELENA A. IGNATOVA ◽  
MICHAEL S. IGNATOV

The genus Seligeria is revised based on morphological and DNA sequence data of nuclear ITS and chloroplastic trnL-F. Fifteen species from most infrageneric units of the genus are recovered in two well supported phylogenetic clusters that are also distinctive in morphology. The clade with the type species of the genus, S. pusilla, includes also S. donniana, S. brevifolia, S. calcarea, S. patula, S. tristichoides, S. trifaria, and S. oelandica. These species are characterized by short, cupulate or turbinate capsules widened towards the mouth, and the lack of a stem central strand. Another clade includes species with rather long, mainly ovate to cylindrical capsules and more or less developed stem central strand: S. campylopoda, S. recurvata, S. subimmersa, S. diversifolia, and S. polaris. These two clusters do not show sister relationships, but the second one appears more closely related to the Blindia clade. To resolve the apparent paraphyly, the latter phylogenetic group is segregated in a genus Blindiadelphus. In some aspects of morphology and ecology it is intermediate between Seligeria s. str. and Blindia, but differs from both genera in subquadrate upper leaf cells and thin- to moderately thick-walled rectangular exothecial cells. Molecular phylogenetic analyses revealed heterogeneity within the specimens previously referred to Blindiadelphus campylopodus, indicating a presence in Asian Russia of an undescribed species that is described here as Blindiadelphus sibiricus. It differs from B. campylopodus by the larger spores and typically rounded leaf apices. The isotype specimen of S. galinae appeared to be nearly identical to S. donniana in the sequences of ITS and trnL-F, and examination of morphology revealed no substantial differences between these species. Thus, we consider S. galinae as a synonym of S. donniana. The genus Blindiadelphus includes species of Seligeria subg. Blindiadelphus and S. subg. Cyrtoseligeria, which however are found intermingled in the molecular phylogenetic analysis. Thus the genus Blindiadelphus is accepted without any infrageneric taxa. The phylogenetic tree is congruent with the subdivision of the genus Seligeria s.str into subg. Seligeria, subg. Anodon, subg. Megalosporia and one newly established subgenus Robustidontia for S. brevifolia.


Phytotaxa ◽  
2019 ◽  
Vol 392 (1) ◽  
pp. 1
Author(s):  
GABRIEL F. GONÇALVES ◽  
ANNA VICTORIA S. R. MAUAD ◽  
GIULIANA TAQUES ◽  
ERIC C. SMIDT ◽  
FÁBIO DE BARROS

In order to evaluate the monophyly of the genus Orleanesia (Orchidaceae) and to assess its position within Laeliinae, a phylogenetic analysis was performed using molecular (nuclear ITS and plastid matK DNA sequences) and morphological data. A taxonomic revision of Orleanesia was also performed, with a description of the genus and its species using fresh living plants and 115 exsiccates from 31 herbaria. All phylogenetic analyses were highly congruent, and thus the sequence data from all three data sets were combined. The resulting phylogeny corroborated the monophyly of Orleanesia, with two strongly supported clades, and confirmed Caularthron as its sister group. Character analysis was not very informative due to a high degree of homoplasy. Two lectotypifications and three new synonyms were proposed for the genus, thereby reducing the number of accepted species to six. Although none of the species of Orleanesia are considered endangered, it is clear that some populations are threatened with deforestation and habitat reduction.


Author(s):  
Simone Neethling ◽  
Alan Channing ◽  
Lisa-Ann Gershwin ◽  
Mark J. Gibbons

A new record of Crambionella stuhlmanni is reported from the east coast of South Africa. The material is described using quantitative morphological data, and mitochondrial (CO1) and nuclear (ITS-1) sequence data. The species can be diagnosed by a combination of morphological features including the presence of conical projections on velar lappets, the absence of orbicular appendages among mouthlets and the short length of the terminal club on the oral arm. Mitochondrial sequence data unambiguously delineate C. stuhlmanni as a separate species from C. orsini, and phylogenetic analyses support its placement within the monophyletic genus, Crambionella.


Phytotaxa ◽  
2020 ◽  
Vol 464 (3) ◽  
pp. 236-242
Author(s):  
ZHUANG ZHOU ◽  
DIYANG ZHANG ◽  
GUI-ZHEN CHEN ◽  
XIA YU ◽  
CHENG-RU LI ◽  
...  

A new orchid species, Cymbidium brevifolium, from Hubei Province, China, is described and illustrated based on morphological and molecular analyses. A detailed comparison between the newly discovered orchid and other members of Cymbidium was conducted. The new orchid is distinct from all other recognized species in Cymbidium. Phylogenetic analyses based on nuclear (ITS) and plastid DNA (matK and rbcL) sequence data support the status of C. brevifolium as a new species, which is sister to C. faberi.


Phytotaxa ◽  
2017 ◽  
Vol 292 (1) ◽  
pp. 35 ◽  
Author(s):  
TIAN-JING TONG ◽  
MING TANG ◽  
CHEN REN ◽  
QIN-ER YANG

We apply a multidisciplinary approach to settle the dispute over the generic affiliation of the Himalayan species Senecio kumaonensis (based on Cacalia penninervis). Some floral micromorphological characters of this species, including shape of anther bases, configuration of anther collars, and anther endothecial tissue cell wall thickenings, are confirmed to perfectly match those of Senecio and this has obviously resulted in the placement of the species within that genus. Chromosome counts indicate S. kumaonensis has 2n = 40, a number common to Senecio and Synotis but not occurring in Parasenecio (the correct generic name for the Asian species previously referred to Cacalia), which has 2n = 52, 58, and 60. The presence of six subterminal-centromeric (st) chromosomes in the karyotype of S. kumaonensis, however, lends strong support to the close relationship of this species to Synotis. Our phylogenetic analyses based on ITS/ ETS sequences also place S. kumaonensis in Synotis. In this species the anther tail feature, once deemed to be diagnostic for Synotis (anther bases in Synotis with sterile, tailed auricles vs. those in Senecio without such auricles, obtuse to sagittate), has an exception as evidenced from phylogeny. We therefore transfer S. kumaonensis to Synotis and, as the epithet “penninervis” has hitherto never been used in the genus, we propose the new combination Syn. penninervis for this species.


2019 ◽  
Vol 44 (4) ◽  
pp. 930-942
Author(s):  
Geraldine A. Allen ◽  
Luc Brouillet ◽  
John C. Semple ◽  
Heidi J. Guest ◽  
Robert Underhill

Abstract—Doellingeria and Eucephalus form the earliest-diverging clade of the North American Astereae lineage. Phylogenetic analyses of both nuclear and plastid sequence data show that the Doellingeria-Eucephalus clade consists of two main subclades that differ from current circumscriptions of the two genera. Doellingeria is the sister group to E. elegans, and the Doellingeria + E. elegans subclade in turn is sister to the subclade containing all remaining species of Eucephalus. In the plastid phylogeny, the two subclades are deeply divergent, a pattern that is consistent with an ancient hybridization event involving ancestral species of the Doellingeria-Eucephalus clade and an ancestral taxon of a related North American or South American group. Divergence of the two Doellingeria-Eucephalus subclades may have occurred in association with northward migration from South American ancestors. We combine these two genera under the older of the two names, Doellingeria, and propose 12 new combinations (10 species and two varieties) for all species of Eucephalus.


2021 ◽  
Vol 9 (3) ◽  
pp. 666
Author(s):  
Niccolò Forin ◽  
Alfredo Vizzini ◽  
Federico Fainelli ◽  
Enrico Ercole ◽  
Barbara Baldan

In a recent monograph on the genus Rosellinia, type specimens worldwide were revised and re-classified using a morphological approach. Among them, some came from Pier Andrea Saccardo’s fungarium stored in the Herbarium of the Padova Botanical Garden. In this work, we taxonomically re-examine via a morphological and molecular approach nine different Roselliniasensu Saccardo types. ITS1 and/or ITS2 sequences were successfully obtained applying Illumina MiSeq technology and phylogenetic analyses were carried out in order to elucidate their current taxonomic position. Only the ITS1 sequence was recovered for Rosellinia areolata, while for R. geophila, only the ITS2 sequence was recovered. We proposed here new combinations for Rosellinia chordicola, R. geophila and R. horridula, while for R. ambigua, R. areolata, R. australis, R. romana and R. somala, we did not suggest taxonomic changes compared to the current ones. The name Rosellinia subsimilis Sacc. is invalid, as it is a later homonym of R. subsimilis P. Karst. & Starbäck. Therefore, we introduced Coniochaeta dakotensis as a nomen novum for R. subsimilis Sacc. This is the first time that these types have been subjected to a molecular study. Our results demonstrate that old types are an important source of DNA sequence data for taxonomic re-examinations.


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 3216-3225 ◽  
Author(s):  
Xiaoteng Lu ◽  
Chen Shao ◽  
Yuhe Yu ◽  
Alan Warren ◽  
Jie Huang

The oxytrichid species Pleurotricha curdsi (Shi et al., 2002) Gupta et al., 2003, isolated from a tributary of the Yangtze River in the Mudong district of Chongqing, southern China, was reinvestigated with emphasis on its morphology, morphogenesis and small-subunit (SSU) rDNA-based phylogeny. Compared with three previously described populations, the Mudong population of P. curdsi is characterized by its large body size, 170–295 × 65–110 μm in vivo, and by having a variable number of right marginal rows, either two or three. Likewise, the number of right marginal rows anlagen (RMA) is also variable, i.e. usually two, but sometimes several small extra anlagen that give rise to the formation of the third row, are present to the left of the RMAs. We posit that the Mudong population is an intermediate form between the three previously described populations. Phylogenetic analyses based on the SSU rDNA sequence data show that all populations of P. curdsi cluster with the type species of the genus, Pleurotricha lanceolata, in a clade nested within the Oxytrichidae.


Plant Disease ◽  
2003 ◽  
Vol 87 (11) ◽  
pp. 1329-1332 ◽  
Author(s):  
J. Roux ◽  
H. Myburg ◽  
B. D. Wingfield ◽  
M. J. Wingfield

Cryphonectria cubensis is an economically important pathogen of commercial Eucalyptus spp. Differences have been reported for disease symptoms associated with Cryphonectria canker in South Africa and other parts of the world, and recent DNA-based comparisons have confirmed that the fungus in South Africa is different from that in South America and Australasia. During a disease survey in the Republic of Congo, Cryphonectria canker was identified as an important disease on Eucalyptus grandis and E. urophylla. In this study, we compared Congolese and South African isolates of C. cubensis using DNA sequence data and pathogenicity under greenhouse conditions. The β-tubulin and internal transcribed spacer (ITS) region sequences show that C. cubensis in Congo is different from the fungus in South Africa and that Congolese isolates group most closely with South American isolates. Furthermore, pathogenicity tests showed that a South African isolate was more aggressive than two Congolese isolates. We conclude that two distinct Cryphonectria spp. occur in Africa and hypothesize that the fungus in the Congo probably was introduced into Africa from South America. Both fungi are important pathogens causing disease and death of economically important plantation trees. However, they apparently have different origins and must be treated separately in terms of disease management and quarantine considerations.


Sign in / Sign up

Export Citation Format

Share Document