Impact of Cotton Stalk Biomass Weathering on the Mechanical and Thermal Properties of Cotton Stalk Flour/Linear Low Density Polyethylene (LLDPE) Composites

2017 ◽  
Vol 11 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Lemma Dadi Bekele ◽  
Wentao Zhang ◽  
Yiliang Liu ◽  
Gregory Joseph Duns ◽  
Chunhan Yu ◽  
...  
2019 ◽  
Vol 135 (5) ◽  
pp. 1042-1044 ◽  
Author(s):  
L. Altay ◽  
A. Guven ◽  
M. Atagur ◽  
T. Uysalman ◽  
G. Sevig Tantug ◽  
...  

2011 ◽  
Vol 18 (6) ◽  
pp. 2275-2284 ◽  
Author(s):  
Muhammad J. Khan ◽  
Abdulhadi A. Al-Juhani ◽  
Reyad Shawabkeh ◽  
Anwar Ul-Hamid ◽  
Ibnelwaleed A. Hussein

2013 ◽  
Vol 795 ◽  
pp. 433-437 ◽  
Author(s):  
S.T. Sam ◽  
N.Z. Noriman ◽  
S. Ragunathan ◽  
O.H. Lin ◽  
H. Ismail

Soya spent powder as an inexpensive and renewable source has been used as a filler for linear-low density polyethylene (LLDPE) in this study. Linear-low density polyethylene (LLDPE)/soya spent powder composites were prepared by using Haake internal mixer. The mixing time was 10 minutes at 150°C with rotor speed 50 rpm. Epoxidised natural rubber (ENR 50) has been used as a compatibilizer in the present study. The thermal properties of the LLDPE/soya spent powder composites with and without ENR were studied with a differential scanning calorimetry (DSC). The crystallinity of the LLDPE/soya spent powder composites decreased with increasing soya spent powder content. However, the addition of ENR 50 as a compatibilizer increased the crystallinity of the LLDPE/soya spent powder composites.


Sign in / Sign up

Export Citation Format

Share Document