Induction of Bone Remodeling by Raloxifene-Doped Iron Oxide Functionalized with Hydroxyapatite to Accelerate Fracture Healing

2021 ◽  
Vol 17 (5) ◽  
pp. 932-941
Author(s):  
Gengqi Wang ◽  
Wenqiang Xu ◽  
Junjie Zhang ◽  
Tian Tang ◽  
Jing Chen ◽  
...  

Repairing fractures in the presence of infection is a major challenge that is currently declining using nanotechnology. By producing iron oxide nanoparticles (NPs) containing hydroxyapatite and Raloxifene (R-IONPs-HA), this study tries to target drug delivery, control infection and promotion of the cells proliferation/differentiation to repair damaged tissue. After the production of R-IONPs-HA through co-precipitation, the physicochemical features of the NPs were considered by SEM, TEM, DLS and XRD methods, and the possibility of drug release. The effect of R-IONPs-HA on MC3T3-E1 cell proliferation/differentiation was determined by CCK-assay and microscopic observations. Also, Gram-negative and -positive bacteria were applied to evaluate the antibacterial activity. Finally, cell differentiation biomarkers like an ALP, OCN, and RUNX-2 genes were examined by real time (RT)-PCR. The results showed that R-IONPs-HA was spherical with dimensions of 98.1 ± 1.17 nm. In addition, the results of Zeta and XRD confirmed the loading HA and R on IONPs. Also, the release rate of R and HA in 64 h with pH 6 reached 61.4 and 30.4%, respectively. The anti-bacterial activity of R-IONPs-HA on Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa bacteria showed a significant reduction in infection. Also, MC3T3-E1 cells showed greater proliferation and differentiation by R-IONPs-HA compared to other groups. Increased expression of ossification genes such as OCN, and RUNX-2 confirmed this claim. Finally, R-IONPs-HA with good biocompatibility, antibacterial activity and ossification induction has great potential to repair bone fractures and prevent infection.

2019 ◽  
Vol 31 (8) ◽  
pp. 1719-1723
Author(s):  
Nguyen Thi Thanh Thuy ◽  
Le Duc Anh ◽  
Nguyen Huu Tri ◽  
Cu Van Hoang ◽  
Nguyen Anh Nhut

The PEG-coated iron oxide nanoparticles (Fe3O4 NPs-PEG) was synthesized by coprecipitation and ultrasonication method. X-ray diffraction results exhibited that the average size of Fe3O4 NPs-PEG was 19.10 nm, which was further confirmed in TEM imaging. In addition, sonication time and curcumin concentration were studied to evaluate the efficiency of loading curcumin onto Fe3O4 NPs-PEG. Further, statistical optimization using response surface methodology (RSM) has shown curcumin concentration (0,01% w/v) and sonication time (21 min) for maximal curcumin loading (0.37 mg/g). Along with the magnetization studies, the immobilization of curcumin onto the Fe3O4 NPs-PEG was characterized by UV, FTIR and SEM. The results showed that the curcumin loaded PEG coated iron oxide nanoparticles could potentially be used for magnetically target drug delivery.


2019 ◽  
Vol 5 (3) ◽  
pp. 50 ◽  
Author(s):  
Marcos Luciano Bruschi ◽  
Lucas de Alcântara Sica de Toledo

Advances of nanotechnology led to the development of nanoparticulate systems with many advantages due to their unique physicochemical properties. The use of iron-oxide magnetic nanoparticles (IOMNPs) in pharmaceutical areas increased in the last few decades. This article reviews the conceptual information about iron oxides, magnetic nanoparticles, methods of IOMNP synthesis, properties useful for pharmaceutical applications, advantages and disadvantages, strategies for nanoparticle assemblies, and uses in the production of drug delivery, hyperthermia, theranostics, photodynamic therapy, and as an antimicrobial. The encapsulation, coating, or dispersion of IOMNPs with biocompatible material(s) can avoid the aggregation, biodegradation, and alterations from the original state and also enable entrapping the bioactive agent on the particle via adsorption or covalent attachment. IOMNPs show great potential for target drug delivery, improving the therapy as a consequence of a higher drug effect using lower concentrations, thus reducing side effects and toxicity. Different methodologies allow IOMNP synthesis, resulting in different structures, sizes, dispersions, and surface modifications. These advantages support their utilization in pharmaceutical applications, and getting suitable drug release control on the target tissues could be beneficial in several clinical situations, such as infections, inflammations, and cancer. However, more toxicological clinical investigations about IOMNPs are necessary.


2017 ◽  
Vol 41 (5) ◽  
pp. 2055-2061 ◽  
Author(s):  
Tokeer Ahmad ◽  
Ruby Phul ◽  
Nafeesa Khatoon ◽  
Meryam Sardar

Iron oxide nanoparticles (IONPs) were preparedviaa co-precipitation method and were then characterized and evaluated for their antibacterial activity after modification withOcimum sanctumleaf extract.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Xiaoli An ◽  
Haibin Ma ◽  
Bin Liu ◽  
Jizeng Wang

Nanocomposites from PLA/PU containing small concentrations of graphene oxide (GO) were prepared by simple liquid-phase mixing followed by casting. The as-prepared ternary PLA/PU/GO composite films exhibited good antibacterial activity against the gram-positiveStaphylococcus aureusand the gram-negativeEscherichia coli, due to the excellent antibacterial property of GO sheets with high specific surface area. The addition of GO inhibited the attachment and proliferation of microbes on the film surfaces, resulting in that the PLA/PU/GO composite films show remarkably improved antibacterial activity compared with PLA/PU composite film. The inhibition efficiency is proportional to the amount of GO. Furthermore, PLA/PU/GO composite fibrous paper was fabricated using electrospinning and exhibited good biocompatibility. The addition of GO does not destroy normal cell’s proliferation and differentiation. PLA/PU/GO composites with good antibacterial activity and biocompatibility make it attractive for the environmental and clinical applications and also provide a candidate for future application of tissue engineering.


Author(s):  
Neeraj Mishra ◽  
Tejinder Singh ◽  
Nidhi ◽  
Supandeep Singh Hallan ◽  
Veerpal Kaur

Breast cancer left overs one of the greatest common metastasis disease in females. Advanced diagnostic devices and better understanding of tumour biology can extend the better therapeutic outcomes. Nanotechnology is a tool that helps in cancer diagnosis and treatment therapy. Many nanocarriers such as solid lipid nanoparticles, magnetic nanoparticles, nanocrystals, nanogels, nano-lipid nanocarriers, biodegradable nanoparticles, liposomes, and dendrimers are introduced to improve the therapeutic efficacy of antineoplastic agents. Surface modified target drug delivery system has the potential to increase the therapeutic effects and also reduce the cytotoxicity of breast cancer. Different approaches have been explored for treatment of breast cancer. This review describes the recent advances in the development of nanocarriers used for the targeted treatment of breast cancer. It also focuses on etiology, risk factor and conventional therapy of breast cancer. KEYWORDS: Breast Cancer; Nano-carriers; Tumor Targeting; Ligands; Receptor.


2021 ◽  
Vol 16 (1) ◽  
pp. 3-13
Author(s):  
Lang Wang ◽  
Yong Li ◽  
Maorui Zhang ◽  
Kui Huang ◽  
Shuanglin Peng ◽  
...  

Adipose-derived stem cells are adult stem cells which are easy to obtain and multi-potent. Stem-cell therapy has become a promising new treatment for many diseases, and plays an increasingly important role in the field of tissue repair, regeneration and reconstruction. The physicochemical properties of the extracellular microenvironment contribute to the regulation of the fate of stem cells. Nanomaterials have stable particle size, large specific surface area and good biocompatibility, which has led them being recognized as having broad application prospects in the field of biomedicine. In this paper, we review recent developments of nanomaterials in adipose-derived stem cell research. Taken together, the current literature indicates that nanomaterials can regulate the proliferation and differentiation of adipose-derived stem cells. However, the properties and regulatory effects of nanomaterials can vary widely depending on their composition. This review aims to provide a comprehensive guide for future stem-cell research on the use of nanomaterials.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
J. Baalamurugan ◽  
V. Ganesh Kumar ◽  
T. Stalin Dhas ◽  
S. Taran ◽  
S. Nalini ◽  
...  

AbstractMetals and metal oxide-based nanocomposites play a significant role over the control of microbes. In this study, antibacterial activity of iron oxide (Fe2O3) nanocomposites based on induction furnace (IF) steel slag has been carried out. IF steel slag is an industrial by-product generated from secondary steel manufacturing process and has various metal oxides which includes Al2O3 (7.89%), MnO (5.06), CaO (1.49%) and specifically Fe2O3 (14.30%) in higher content along with metalloid SiO2 (66.42). Antibacterial activity of iron oxide nanocomposites has been revealed on bacterial species such as Micrococcus luteus, Bacillus subtilis and Staphylococcus aureus. Micrococcus luteus has undergone maximum zone of inhibition (ZOI) of 12 mm for 10 mg/mL concentration of steel slag iron oxide nanocomposite. Growth inhibitory kinetics of bacterial species has been studied using ELISA microplate reader at 660 nm by varying the concentration of steel slag iron oxide nanocomposites. The results illustrate that IF steel slag is a potential material and can be utilized in building materials to increase the resistance against biodeterioration. Graphic abstract


2017 ◽  
Vol 46 (6) ◽  
pp. 3381-3389 ◽  
Author(s):  
Vu Thi Trang ◽  
Le Thi Tam ◽  
Nguyen Van Quy ◽  
Tran Quang Huy ◽  
Nguyen Thanh Thuy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document