miR-9-5p Increases Sensitivity to Cisplatin in Thyroid Cancer Cells by Down-Regulating BRAF Expression

2019 ◽  
Vol 9 (6) ◽  
pp. 751-759
Author(s):  
Wanzhi Chen ◽  
Jichun Yu ◽  
Rong Xie ◽  
Meijun Zhong

Objective: To explore the expression of miR-9-5p and BRAF in cisplatin resistant strain thyroid cancer cells and reversal effect of drug resistance as well as the possible mechanism. Methods: The cisplatin-resistant thyroid cancer cells (FTC-133/DDP and TPC-1/DDP) were respectively divided into 3 groups as NC, DDP and DDP + miRNA groups. Measuring cell proliferation by MTT assay and cell apoptosis by flow cytometry; Evaluating invasion cell number and wound healing rates by transwell and wound healing assay. The relative proteins (BRAF, Mek and Erk1/2) were measured by WB assay. The correlation between miR-9-5p and BRAF by dual-luciferase reporter assay in FTC-133/DDP and TPC-1/DDP cells. Results: In FTC-133/DDP and TPC-1/DDP cells experiment, compared with DDP group, with miR-9-5p supplement, the cell proliferation rats were significantly depressed with cell apoptosis increasing (P < 0.001, respectively); invasion cell number and wound healing rats were significantly down-regulation (P < 0.001, respectively) in DDP + miRNA groups. Meanwhile, the BRAF, Mek and Erk1/2 proteins expressions were significantly depressed in DDP + miRNA groups were significantly suppressed compared with those in DDP groups (P < 0.001, respectively). By dual-luciferase reporter assay, BRAF was the target gene of miR-9-5p in FTC133/DDP and TPC-1/DDP cells. Conclusion: miR-9-5p increases sensitivity to cisplatin in thyroid cancer cells by down-regulating BRAF expression.

2020 ◽  
Author(s):  
Hanshu Ji ◽  
Xiaoyu Zhang

Abstract Purpose: lncRNA NEAT1 has been reported as a tumor-promoting gene in a variety of tumors, but few studies have explored its role and mechanism in gastric cancer. In the face of increasing incidence of gastric cancer, how to improve the diagnostic accuracy and therapeutic effect of gastric cancer is a major clinical problem. Therefore, we studied the effect and mechanism of lncRNA NEAT1 on the proliferation, invasion and epithelial-mesenchymal transition of gastric cancer cells. To inquiry into the effect of lncRNA NEAT1 on the proliferation, invasion and epithelial-mesenchymal transition (EMT) of gastric cancer (GC) cells by regulating miR-129-5p/PBX3 axis. Methods: Totally 63 GC diagnosed and treated in our hospital were selected as the study subjects, whose paired GC tissues and pericarcinomatous tissues were collected as the study specimens after obtaining their consent. QRT-PCR was employed to detect the NEAT1 expression in tissues and cells to analyze the relationship between NEAT1 and clinicopathological data of GC patients. In addition, stable and transient overexpression and inhibition vectors were established and transfected into GC cells HCG-27 and MKN-45. CCK-8, traswell, and flow cytometry were employed to evaluate the proliferation, invasion, and apoptosis of transfected cells. The correlation of miR-129-5p between PBX3 and NEAT1 was assessed using dual luciferase reporter assay, while that between NEAT1 and miR-129-5p was assessed by RNA-binding protein immunoprecipitation (RIP) . Western blot was applied for the detection of apoptosis and EMT related proteins.Results: NEAT1 was overexpressed in GC patients and had a high diagnostic value. The expression of NEAT1 was related to the pathological stage, differentiation degree, tumor size and lymph node metastasis of patients with GC. Down-regulated NEAT1 brought decreased cell proliferation, invasion and EMT, and increased apoptosis. According to dual luciferase reporter assay, NEAT1 could target miR-129-5p, while in turn miR-129-5p could target PBX3. Functional analysis exhibited that miR-129-5p overexpression inhibited PBX3 in GC cells, affecting cell proliferation, invasion, EMT and apoptosis, and rescue experiments demonstrated that these effects were eliminated by up-regulating NEAT1 expression.Conclusion: Inhibition of NEAT1 could mediate miR-129-5p/PBX3 axis to promote apoptosis of GC cells, and reduce cell proliferation, invasion and EMT.


2020 ◽  
Author(s):  
WuBin Weng ◽  
ChangMing Liu ◽  
GuoMin Li ◽  
QiongFang Ruan ◽  
HuiZhang Li ◽  
...  

Abstract Background: Long noncoding RNAs (lncRNAs) are one of the major causes of tumorigenesis. However, the roles and mechan­­isms of lncRNA SNHG16 in prostate cancer (PCa) remain unknown. The purpose of this study was to elucidate the mech­­anisms of lncRNA SNHG16 in the proliferation and metastasis of human PCa cells.Material and Methods: First, the quantitative polymerase chain reaction (qPCR) was used to measure SNHG16 expression in PCa tissues and adjacent normal tissues (n=80). Down-regulate and over-express SNHG16 in human PCa DU-145 cell. Then cell proliferation was detected by CCK8 assay, cell apoptosis was analyzed by flow cytometry, cell migration were determined by wound healing, and cell invasion was examined by transwell. Western blot assays were used to examine the expression of the TGFBR2, c-MYC, E2F4, SMAD2, p-SMAD2, SMAD3, and p-SMAD3. Second, the targeting relationship between SNHG16 and hsa-miR-373-3p was verified by dual-luciferase reporter assay and rescue experiments. Third, the targeting relationship between hsa-miR-373-3p and TGFBR2 was verified by dual-luciferase reporter assay and rescue experiments. Results: The expression of SNHG16 was significant increase in PCa tissues (Z=-8.405, P<0.001), and with significant correlation with patient's age (<60 and ≥60 years old, P=0.007). Silencing SNHG16 inhibited DU-145 cell proliferation, migration, and invasion, while induced cell apoptosis significantly (P<0.01, respectively). Overexpressing SNHG16 promoted cell proliferation, migration and invasion, and reduced cell apoptosis rate (P<0.05, respectively). SNHG16 overexpression observably increased TGFBR2, c-MYC, E2F4, p-SMAD2, and p-SMAD3 expression (P<0.001, respectively), but SNHG16 inhibition was opposite. However, SNHG16 did not regulate SMAD2 and SMAD3 expression. Next, hsa-miR-373-3p was found down-regulated in PCa tissues (Z=-8.344, P<0.001), and the down-regulation of hsa-miR-373-3p were closely linked to Gleason score (Gleason score: <7 and >7, P = 0.024). Hsa-miR-373-3p expression of hsa-miR-373-3p was negatively correlated with SNHG16 (r=-0.544, P<0.001). The result of dual-luciferase reporter assay and qPCR test revealed that hsa-miR-373-3p was a target of SNHG16. Hsa-mir-373-3p inhibitor could rescue sh-SNHG16-inhibited cell proliferation, migration and invasion by promoting TGFBR2, C-MYC, E2F4, P-Smad2, and P-smad3 expression. Finally, we found that TGFBR2 may be the target gene of hsa-mir-373-3p through TargetScan and starbase. Further research found that TGFBR2 was markedly up-regulated in PCa tissues (Z=-5.945, P<0.001), and the expression of TGFBR2 was negatively correlated with hsa-miR-373-3p (r=-0.627, P<0.001). Dual-luciferase reporter assay and qPCR test showed that TGFBR2 was a target of hsa-miR-373-3p. TGFBR2 knockdown could inhibit hsa-mir-373-3p inhibitor-induced cell proliferation, migration and invasion, and reversed the effect of hsa-mir-373-3p inhibitor on cell apoptosis. Based on the data, sh-TGFBR2 partially disabled hsa-mir-373-3p inhibitor effect. Conclusion: LncRNA SNHG16 might act as a ceRNA to regulate the proliferation and migration of DU-145 cells by modulating the hsa-miR-373-3p/TGFBR2/SMAD axis.


2020 ◽  
Author(s):  
Yunhe An ◽  
Jun Zhang ◽  
Yanjie Tian ◽  
Baoming Li ◽  
Xiaoyan Cheng ◽  
...  

Abstract Background The aberrant expression of microRNA-454 (miR-454) has been confirmed to be involved in the development of cancers. However, the functional role of miR-454 in the progression of ovarian cancer remains unclear. Methods The expression of miR-454 in ovarian cancer cells and serum of ovarian cancer patients was detected by RT-PCR. CCK8, colony formation, transwell, and flow cytometry assays were conducted to assess the effects of miR-454 on ovarian cancer cell proliferation, migration, invasion, and apoptosis, respectively. Dual-luciferase reporter assay was used to confirm the targeting relationship between miR-454 and E2F6. The expression pattern of E2F6 in ovarian cancer tissues was detected using immunohistochemistry (IHC) assay. The relative expression of related proteins was examined using western blot analysis. Results miR-454 was markedly down-regulated by hypoxia in ovarian cancer cells. Compared with normal samples, the expression of miR-454 was up-regulated in the serum of ovarian cancer patients, and correlated with the clinicopathological stages of ovarian cancer. Next, we found that miR-454 overexpression inhibited the proliferation, migration and invasion of OVCAR3 and SKOV3 cells, as well as promoted apoptosis. In addition, the Akt/mTOR and Wnt/β-catenin signaling pathway were inhibited by miR-454 in ovarian cancer cells. Mechanically, bioinformatic analysis and dual-luciferase reporter assay confirmed that E2F6 was a direct target of miR-454 and negatively regulated by miR-454 in ovarian cancer cells. Moreover, IHC analysis showed that E2F6 was highly expressed in ovarian cancer tissues. Finally, we found that the increasing cell proliferation and migration triggered by E2F6 overexpression were abolished by miR-454 overexpression. Conclusion Taken together, these results highlight the role of miR-454 as a tumor suppressor in ovarian cancer cells by targeting E2F6, indicating that miR-454 may be a potential diagnostic biomarker and therapeutic target for ovarian cancer.


2020 ◽  
Author(s):  
Yunhe An ◽  
Jun Zhang ◽  
Yanjie Tian ◽  
Baoming Li ◽  
Xiaoyan Cheng ◽  
...  

Abstract Background: It has been reported that hypoxia is closely related to the tumor malignancy and recurrence and regulates multiple hub genes in ovarian cancer. MicroRNA-454 (miR-454) has been confirmed to be involved in tumorigenesis and tumor development. However, the functional role of miR-454 in ovarian cancer remains unclear.Methods: The expression of miR-454 in ovarian cancer cells and serum of ovarian cancer patients was detected by RT-PCR. CCK8, colony formation, transwell, and flow cytometry assays were conducted to assess the effects of miR-454 on ovarian cancer cell proliferation, migration, invasion, and apoptosis. Dual-luciferase reporter assay was used to confirm the targeting relationship between miR-454 and E2F6. The expression pattern of E2F6 in ovarian cancer tissues was detected using immunohistochemistry assay. The relative expression of related proteins was examined using western blot analysis.Results: miR-454 was markedly down-regulated by hypoxia in ovarian cancer cells. Compared with normal serum, the expression of miR-454 was up-regulated in the serum of ovarian cancer patients, and was correlated with the clinicopathological stage of ovarian cancer patients. Next, we found that miR-454 overexpression inhibited the proliferation, migration and invasion of OVCAR3 and SKOV3 cells, as well as promoted apoptosis. In addition, the Akt/mTOR and Wnt/β-catenin signaling pathway were inhibited by miR-454. Bioinformatic analysis and dual-luciferase reporter assay confirmed that E2F6 was a target of miR-454 and negatively regulated by miR-454 in ovarian cancer cells. Moreover, immunohistochemical analysis showed that E2F6 was highly expressed in ovarian cancer tissues. Finally, we found that the increasing cell proliferation and migration triggered by E2F6 overexpression were abolished by miR-454 overexpression.Conclusion: Taken together, these results highlight the role of miR-454 as a tumor suppressor in ovarian cancer by targeting E2F6, indicating that the hypoxia/miR-454/E2F6 pathway may be a novel therapeutic approach for ovarian cancer.


2022 ◽  
Vol 12 (5) ◽  
pp. 1053-1058
Author(s):  
Shunfu Zhu ◽  
Neng Jiang ◽  
Jianjun Zhu

Objective: Yes-associated protein 1 (YAP1) regulates cell proliferation and apoptosis. Abnormal miR-375 level was related to thyroid cancer. Software predicted a relationship between miR-375 and YAP1. Our study investigated whether miR-375 regulates YAP1 expression and affects thyroid cancer cells. Methods: The tumor tissues and adjacent tissues of thyroid cancer patients were collected to measure miR-375 and YAP1 expression. The dual luciferase reporter experiment verified the regulation between miR-375 and YAP1. Thyroid cancer cell line B-CPAP and TPC-1 cells were divided into miR-NC group and miR-375 mimic group followed by analysis of cell proliferation by flow cytometry, caspase-3 activity, and cell clone formation ability by plate cloning assay. Results: Compared with adjacent cancer tissues, miR-375 in thyroid cancer tissues was decreased and YAP1 was increased. miR-375 targets YAP1. Compared with Nthy-ori 3-1 cells, miR-375 in B-CPAP and TPC-1 cells was significantly reduced and YAP1 was increased. Transfection with miR-375 mimic significantly inhibited cell proliferation, increase caspase-3 activity, and reduced the ability of cells to form clones. Conclusion: miR-375 can inhibit YAP1 expression, decrease the proliferation of thyroid cancer cells, induce cell apoptosis, and reduce clone formation.


2022 ◽  
Vol 12 (4) ◽  
pp. 681-689
Author(s):  
Zhou Hongyi ◽  
Yan Zhiqiang ◽  
Zhu Leilei ◽  
Li Maolin ◽  
Shao Jianfeng ◽  
...  

Objection: Our research wanted to discuss miR-29b-3p in PCa occurrence and development and relative mechanisms. Methods: Collecting adjacent and cancer tissues from prostate cancer patients and measuring miR-29b-3p expressions by RT-qPCR and ISH assay. Using DU145 and PC3 cell lines which the miR-29b-3p were high expression in our study. Using miR inhibitor to knockdown miR-29b-3p in DU145 and PC3. Using CCK-8 and flow cytometry to measure cell proliferation and cell apoptosis, invasion cell number by transwell and wound healing rate by wound healing assay. The relative proteins expressions were measured using WB assay. p-AKT nuclear levels were evaluated using Cell immunofluorescence test. Using dual-luciferase reporter gene assay to analysis correlation miR-29b-3p and PTEN. Results: miR-29b-3p gene significantly increased. miR-29b-3p knockdown had effects to depress cell proliferation, increase cell apoptosis, depress invasion cells number and wound healing rates. PTEN proteins were significantly up-regulation and p-AKT and MMP-9 proteins expressions were significantly down-regulation (P < 0.001, respectively). And p-AKT nuclear volume were significantly depressed. And miR-29b-3p could target PTEN. Conclusion: miR-29b-3p played an oncology gene in prostate cancer via regulation PTEN/AKT pathway in vitro study.


2014 ◽  
Vol 99 (7) ◽  
pp. E1163-E1172 ◽  
Author(s):  
Wei Qiang ◽  
Yuan Zhao ◽  
Qi Yang ◽  
Wei Liu ◽  
Haixia Guan ◽  
...  

Context: ZIC1 has been reported to be overexpressed and plays an oncogenic role in some brain tumors, whereas it is inactivated by promoter hypermethylation and acts as a tumor suppressor in gastric and colorectal cancers. However, until now, its biological role in thyroid cancer remains totally unknown. Objectives: The aim of this study is to explore the biological functions and related molecular mechanism of ZIC1 in thyroid carcinogenesis. Setting and Design: Quantitative RT-PCR (qRT-PCR) was performed to evaluate mRNA expression of investigated genes. Methylation-specific PCR was used to analyze promoter methylation of the ZIC1 gene. The functions of ectopic ZIC1 expression in thyroid cancer cells were determined by cell proliferation and colony formation, cell cycle and apoptosis, as well as cell migration and invasion assays. Results: ZIC1 was frequently down-regulated by promoter hypermethylation in both primary thyroid cancer tissues and thyroid cancer cell lines. Moreover, our data showed that ZIC1 hypermethylation was significantly associated with lymph node metastasis in patients with papillary thyroid cancer. Notably, restoration of ZIC1 expression in thyroid cancer cells dramatically inhibited cell proliferation, colony formation, migration and invasion, and induced cell cycle arrest and apoptosis by blocking the activities of the phosphatidylinositol-3-kinase (PI3K)/Akt and RAS/RAF/MEK/ERK (MAPK) pathways, and enhancing FOXO3a transcriptional activity. Conclusions: Our data demonstrate that ZIC1 is frequently inactivated by promoter hypermethyaltion and functions as a tumor suppressor in thyroid cancer through modulating PI3K/Akt and MAPK signaling pathways and transcription factor FOXO3a.


Sign in / Sign up

Export Citation Format

Share Document