Expressed Sequence Tags-1-Targeted MiRNA-326 in Gastric Cancer Induces Local Immune Inflammatory Microenvironment by Inducing T Helper Cell 17 Cell Differentiation

2021 ◽  
Vol 11 (12) ◽  
pp. 2367-2374
Author(s):  
Liu Wang ◽  
Shuyuan Li ◽  
Jinsong Wan ◽  
Yuanyuan Li ◽  
Peng Liu

This study intends to assess miRNA-326’s effect on the immune-inflammatory microenvironment and its mechanism in gastric cancer (GC). GC adjacent tissues and tumor tissues were collected to analyze inflammatory factors by immunohistochemistry and ELISA, Est-1 and miRNA-326 level by Western blot or PCR, Th17 cells by flow cytometry. CD4+ T cells were transfected with Est-1 inhibitor, Est-1 mimics, or miR-326 mimics followed by measurement of Th17 differentiation-related genes via gene chips and inflammatory factor release. Inflammatory factors in serum of GC patients were significantly increased and miR-326 was upregulated with decreased Est-1 and unbalanced Th17/Treg cell ratio. miR-326 targeted Est-1 to inhibit its expression. After transfection with Est-1 inhibitor, Th17 differentiation-related genes were upregulated. After transfection with miR-326 mimics, Est-1 level was reduced and inflammation was enhanced with maturation of Th17 cells. In conclusion, miRNA-326 induces Th17 cell differentiation by targeting Est-1, thereby promoting the release of inflammatory factors and inducing immune inflammatory microenvironment.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi Tian ◽  
Chao Han ◽  
Zhiyuan Wei ◽  
Hui Dong ◽  
Xiaohe Shen ◽  
...  

AbstractT helper type 17 (Th17) cells have important functions in the pathogenesis of inflammatory and autoimmune diseases. Retinoid-related orphan receptor-γt (RORγt) is necessary for Th17 cell differentiation and functions. However, the transcriptional regulation of RORγt expression, especially at the enhancer level, is still poorly understood. Here we identify a novel enhancer of RORγt gene in Th17 cells, RORCE2. RORCE2 deficiency suppresses RORγt expression and Th17 differentiation, leading to reduced severity of experimental autoimmune encephalomyelitis. Mechanistically, RORCE2 is looped to RORγt promoter through SRY-box transcription factor 5 (SOX-5) in Th17 cells, and the loss of SOX-5 binding site in RORCE abolishes RORCE2 function and affects the binding of signal transducer and activator of transcription 3 (STAT3) to the RORγt locus. Taken together, our data highlight a molecular mechanism for the regulation of Th17 differentiation and functions, which may represent a new intervening clue for Th17-related diseases.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zheying Liu ◽  
Liya Liu ◽  
Yun Zhong ◽  
Mingbo Cai ◽  
Junbi Gao ◽  
...  

Abstract Objective To investigate the mechanism of LncRNA H19 in Th17 cell differentiation and endometrial stromal cells (ESCs) proliferation in endometriosis (EMS). Methods LncRNA H19, miR-342-3p and IER3 expressions were detected by qRT-PCR and western blot. The percentage of Th17 cells/CD4+ T cells was detected by flow cytometry. IL-17 level was measured by ELISA. The interaction of miR-342-3p and IER3 was confirmed by Luciferase reporter assay. Results LncRNA H19 and IER3 expressions were down-regulated in mononuclear cells from peritoneal fluid (PFMCs) of patients with EMS or under Th17 differentiation conditions, whereas miR-342-3p expression was up-regulated and the percentage of Th17 cells was increased in PFMCs of patients with EMS or under Th17 differentiation conditions. Over-expression of LncRNA H19 decreased IL-17 level and the percentage of Th17 cells/CD4+ T cells. Besides, we confirmed that miR-342-3p could target to IER3 and negatively regulate IER3 expression. LncRNA H19 over-expression suppressed Th17 differentiation and ESC proliferation through regulating miR-342-3p/IER3. In vivo experiments showed LncRNA H19 over-expression suppressed the growth of Th17 cell differentiation-induced endometriosis-like lesions. Conclusion LncRNA H19 was down-regulated in PFMC of patients with EMS or under Th17 polarizing conditions, and LncRNA H19 over-expression suppressed Th17 cell differentiation and ESCs proliferation through miR-342-3p/IER3 pathway.


2021 ◽  
Author(s):  
hanlin he ◽  
xiangjie qiu ◽  
mingming qi ◽  
Ousman Bajinka ◽  
ling qin ◽  
...  

Abstract Background: In our previous study, we obtained lncRNA-BG related to COPD through high-throughput screening, but we could not determine the specific mechanism involved. To this responds, here, we designed this study to verify whether lncRNA-BG could regulate the differentiation of Th17 cells and its mechanism. Methods: The interaction between lncRNA-BG and RORγt protein was predicted using bioinformatics approaches. This was then confirmed by RNA pull down and dual luciferase reporter assay. The correlation between lncRNA-BG and Th17 cell differentiation was verified among patients with COPD and in vitro culture experiment. Meanwhile, the regulatory effect of lncRNA-BG on Th17 cell differentiation was determined by regulation the expression level of lncRNA-BG. Results: LncRNA-BG could bind with RORγt protein and inhibit the differentiation of Th17 cells. LncRNA-BG was significantly negatively correlated with Th17 differentiation in patients with COPD and in vitro experiment. The decrease level of LncRNA-BG could promote Th17 differentiation, while the increase level of LncRNA-BG could inhibit Th17 differentiation. Conclusion: LncRNA-BG directly targets RORγt protein, inhibits the mutual binding of RORγt and IL-17 gene promoter, and eventually inhibits Th17 differentiation. LncRNA-BG as a potential target may confer applications in the clinical treatment and diagnosis of Th17-related diseases.


2021 ◽  
Author(s):  
Ankitha Shetty ◽  
Santosh D. Bhosale ◽  
Subhash Kumar Tripathi ◽  
Tanja Buchacher ◽  
Rahul Biradar ◽  
...  

Dysregulated function of Th17 cells has implications in immunodeficiencies and autoimmune disorders. Th17 cell-differentiation is orchestrated by a complex network of transcription factors, including several members of the activator protein (AP-1) family. Among these, FOSL1 and FOSL2 influence the effector responses of Th17 cells. However, the molecular mechanisms underlying their functions are unclear, owing to the poorly characterized protein interaction networks of these factors. Here, we establish the first interactomes of FOSL1 and FOSL2 in human Th17 cells, using affinity purification–mass spectrometry analysis. In addition to the known JUN proteins, we identified several novel binding partners of FOSL1 and FOSL2. Gene ontology analysis found a major fraction of these interactors to be associated with RNA binding activity, which suggests new mechanistic links. Intriguingly, 29 proteins were found to share interactions with FOSL1 and FOSL2, and these included key regulators of Th17-fate. We further validated the binding partners identified in this study by using parallel reaction monitoring targeted mass spectrometry and other methods. Our study provides key insights into the interaction-based signaling mechanisms of FOSL1 and FOSL2 that potentially govern Th17 cell-differentiation and associated pathologies.


2018 ◽  
Vol 215 (9) ◽  
pp. 2413-2428 ◽  
Author(s):  
Krystin Deason ◽  
Ty Dale Troutman ◽  
Aakanksha Jain ◽  
Dilip K. Challa ◽  
Rajakumar Mandraju ◽  
...  

The toll-like receptor (TLR) and interleukin (IL)–1 family of receptors share several signaling components, including the most upstream adapter, MyD88. We previously reported the discovery of B cell adapter for phosphoinositide 3-kinase (BCAP) as a novel toll–IL-1 receptor homology domain–containing adapter that regulates inflammatory responses downstream of TLR signaling. Here we find that BCAP plays a critical role downstream of both IL-1 and IL-18 receptors to regulate T helper (Th) 17 and Th1 cell differentiation, respectively. Absence of T cell intrinsic BCAP did not alter development of naturally arising Th1 and Th17 lineages but led to defects in differentiation to pathogenic Th17 lineage cells. Consequently, mice that lack BCAP in T cells had reduced susceptibility to experimental autoimmune encephalomyelitis. More importantly, we found that BCAP is critical for IL-1R–induced phosphoinositide 3-kinase–Akt–mechanistic target of rapamycin (mTOR) activation, and minimal inhibition of mTOR completely abrogated IL-1β–induced differentiation of pathogenic Th17 cells, mimicking BCAP deficiency. This study establishes BCAP as a critical link between IL-1R and the metabolic status of activated T cells that ultimately regulates the differentiation of inflammatory Th17 cells.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1347-1347
Author(s):  
Zhi-Zhang Yang ◽  
Anne J. Novak ◽  
Thomas E. Witzig ◽  
Stephen M. Ansell

Abstract Numerous clinical therapies have attempted to modulate tumor cell immunity, but for the most part, have proven unsuccessful. The inability to produce or augment an effective immune response is due in part to regulatory T (Treg) cells, which inhibit CD4 and CD8 T cell function. Our group has recently shown that Treg cell numbers are elevated in NHL tumors and that NHL B cells induce the development of Treg cells thereby inhibiting anti-tumor responses. The ability of NHL B cells to direct the cellular composition of their microenvironment is critical to our understanding of tumor immunity and we therefore wanted to determine if NHL B cells also directed the expansion or reduction of other T cell populations. IL-17-secreting CD4+ T cells (TH17), a newly characterized CD4+ T helper cell lineage, promote inflammation and play an important role in autoimmune disease. IL-17 has been shown to inhibit tumor cell growth suggesting a potential role for TH17 cells in anti-tumor immunity. We therefore set out to determine if TH17 cells were present in NHL tumors and whether or not their numbers were regulated by NHL B cells. Using unsorted mononuclear cells from malignant lymph nodes, we were unable to detect IL-17 expression in resting CD4+ T cells or CD4+ T cells activated with PMA/Ionomycin stimulation (less than 1%). However, IL-17-secreting CD4+ T cells could be detected in significant numbers in inflammatory tonsil and normal PBMCs. Interestingly, depletion of CD19+ NHL B cells from mononuclear cells obtained from patient biopsies resulted in detection of a clear population of IL-17-secreting CD4+ T cells (5%). These results suggest that NHL B cells suppress TH17 cell differentiation. The frequency of IL-17-secreting CD4+ T cells could not be further enhanced by the addition of exogenous TGF-b and IL-6, a cytokine combination favoring for TH17 differentiation, suggesting a further impairment of TH17 cell differentiation in the tumor microenvironment. In contrast, Foxp3 expression could be detected in resting CD4+ T cells (30%) and could be induced in CD4+CD25−Foxp3− T cells activated with TCR stimulation (28%). Contrary to the inhibition of TGF-b-mediated TH17 differentiation, Foxp3 expression could be dramatically upregulated by TGF-b in intratumoral CD4+ T cells (35%). In addition, lymphoma B cells strongly enhanced Foxp3 expression in intratumoral CD4+CD25−Foxp3−. Furthermore, when added together, the frequency of Foxp3+ T cells and Foxp3-inducible cells reached up to 60% of CD4+ T cells in tumor microenvironment of B-cell NHL. These findings suggest that the balance of effector TH17 cells and inhibitory Treg cells is disrupted in B-cell NHL and significantly favors the development of inhibitory Treg cells. Our data indicate that lymphoma B cells are key factor in regulating differentiation of intratumoral CD4+ T cells toward inhibitory CD4+ T cells.


2016 ◽  
Vol 43 (2) ◽  
pp. 68-79 ◽  
Author(s):  
M. Gulubova ◽  
J. Ananiev ◽  
M. Ignatova ◽  
K. Halacheva

Summary The current review reveals the seven subclasses of CD4+ T helper cells, i.e. Th1, Th2, Th9, Th17, Th22, regulatory T cells and Tfh, the cytokines produced by them and their role in tumor microenvironment. Main attention was paid to IL-17 and Th17 cells. IL-17-producing cells were described, among which were Treg17 cells and Tc17 cells. The transcription factors, engaged in the activation of Th17 cell differentiation were reviewed. It was shown that Th17 cells might possess regulatory functions in tumor microenvironments that directs toward immunosuppression. The reciprocity between Treg and Th17 cells is realized when the production of a large amount of TGF-β in tumors causes Treg cell differentiation, and the addition of IL-6 shifts the differentiation of naïve T cells to Th17 cells. The main pro-tumor role of IL-17 is the promotion of tumor angiogenesis through stimulation of fibroblasts and endothelial cells. The antitumor functions of IL-17 are associated with enhancement of cytotoxic activity of tumor specific CTL cells and with angiogenesis that provide channels through which immune cells might invade tumor and promote antitumor immunity.


2009 ◽  
Vol 206 (11) ◽  
pp. 2407-2416 ◽  
Author(s):  
Jyoti Das ◽  
Guangwen Ren ◽  
Liying Zhang ◽  
Arthur I. Roberts ◽  
Xin Zhao ◽  
...  

Interleukin (IL)-17–producing T helper (Th17) cells play a critical role in the pathophysiology of several autoimmune disorders. The differentiation of Th17 cells requires the simultaneous presence of an unusual combination of cytokines: IL-6, a proinflammatory cytokine, and transforming growth factor (TGF) β, an antiinflammatory cytokine. However, the molecular mechanisms by which TGF-β exerts its effects on Th17 cell differentiation remain elusive. We report that TGF-β does not directly promote Th17 cell differentiation but instead acts indirectly by blocking expression of the transcription factors signal transducer and activator of transcription (STAT) 4 and GATA-3, thus preventing Th1 and Th2 cell differentiation. In contrast, TGF-β had no effect on the expression of retinoic acid receptor–related orphan nuclear receptor γt, a Th17-specific transcription factor. Interestingly, in Stat-6−/−T-bet−/− mice, which are unable to generate Th1 and Th2 cells, IL-6 alone was sufficient to induce robust differentiation of Th17 cells, whereas TGF-β had no effect, suggesting that TGF-β is dispensable for Th17 cell development. Consequently, BALB/c Stat-6−/−T-bet−/− mice, but not wild-type BALB/c mice, were highly susceptible to the development of experimental autoimmune encephalomyelitis, which could be blocked by anti–IL-17 antibodies but not by anti–TGF-β antibodies. Collectively, these data provide evidence that TGF-β is not directly required for the molecular orchestration of Th17 cell differentiation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ping Li ◽  
Zengli Guo ◽  
Yisong Y. Wan

Pathogenic Th17 cells are critically involved in many autoimmune diseases, while non-pathogenic Th17 cells are more immune regulatory. Understanding the mechanisms of the induction and maintenance of pathogenic Th17 cells will benefit the development of therapeutic treatments of related diseases. We have shown that the transforming growth factor-β (TGFβ) induced SKI degradation and dissociation from Smad4 complex is a prerequisite for TGFβ-induced Th17 cell differentiation. However, it is unclear whether and how SKI regulates pathogenic Th17 differentiation, which does not require TGFβ cytokine. Here we showed that SKI expression was downregulated during pathogenic Th17 cell differentiation and the ectopic expression of SKI abrogated the differentiation of pathogenic Th17 cells. Functionally, using a knock-in mouse model, we found ectopic SKI expression specifically in T cells prevented myelin oligodendrocyte glycoprotein peptide (MOG33–55) induced experimental autoimmune encephalomyelitis (EAE), an animal model of human multiple sclerosis. We further revealed that induced SKI expression in already differentiated pathogenic Th17 cells reduced the maintenance of Th17 program and ameliorated EAE in an adoptive T cell transfer model. Therefore, our study provides valuable insights of targeting SKI to modulate pathogenic Th17 cell function and treat Th17-related diseases.


2019 ◽  
Author(s):  
Bibudha Parasar ◽  
Pamela V. Chang

AbstractT helper 17 (Th17) cells, an important subset of CD4+ T cells, help to eliminate extracellular infectious pathogens that have invaded our tissues. Despite the critical roles of Th17 cells in immunity, how the immune system regulates the production and maintenance of this cell type remains poorly understood. In particular, the plasticity of these cells, or their dynamic ability to trans-differentiate into other CD4+ T cell subsets, remains mostly uncharacterized. Here, we report a synthetic immunology approach using a photo-activatable immune modulator (PIM) to increase Th17 cell differentiation on demand with spatial and temporal precision to help elucidate this important and dynamic process. In this chemical strategy, we developed a latent agonist that, upon photochemical activation, releases a small-molecule ligand that targets the aryl hydrocarbon receptor (AhR) and ultimately induces Th17 cell differentiation. We used this chemical tool to control AhR activation with spatiotemporal precision within cells and to modulate Th17 cell differentiation on demand by using UV light illumination. We envision that this approach will enable an understanding of the dynamic functions and behaviors of Th17 cells in vivo during immune responses and in mouse models of inflammatory disease.


Sign in / Sign up

Export Citation Format

Share Document