Differentiation of Adipose Tissue-Derived Stem Cells into Cardiomyocytes: An Overview

2022 ◽  
Vol 12 (2) ◽  
pp. 427-431
Author(s):  
Wenju Yan ◽  
Yan Li ◽  
Gaiqin Li ◽  
Luhua Yin ◽  
Huanyi Zhang ◽  
...  

Cardiovascular diseases, including congenital and acquired cardiovascular diseases, impose a severe burden on healthcare systems worldwide. Although bone marrow-derived stem cells (BMSCs) therapy can be an effective therapeutic strategy for the heart disease, relatively low abundance, difficult accessibility, and small tissue volume hinder the clinical usefulness. Adipose tissue-derived stem cells (ADSCs) show similar potential with BMSCs to differentiate into lineages and tissues, such as smooth muscle cells, endothelial cells, and adipocytes, with attractiveness of obtaining adipose tissue easily and repeatedly, and a simple separation procedure. We briefly summarize the current understanding of the cardiomyocytes differentiated from ADSCs

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pegah Nammian ◽  
Seyedeh-Leili Asadi-Yousefabad ◽  
Sajad Daneshi ◽  
Mohammad Hasan Sheikhha ◽  
Seyed Mohammad Bagher Tabei ◽  
...  

Abstract Introduction Critical limb ischemia (CLI) is the most advanced form of peripheral arterial disease (PAD) characterized by ischemic rest pain and non-healing ulcers. Currently, the standard therapy for CLI is the surgical reconstruction and endovascular therapy or limb amputation for patients with no treatment options. Neovasculogenesis induced by mesenchymal stem cells (MSCs) therapy is a promising approach to improve CLI. Owing to their angiogenic and immunomodulatory potential, MSCs are perfect candidates for the treatment of CLI. The purpose of this study was to determine and compare the in vitro and in vivo effects of allogeneic bone marrow mesenchymal stem cells (BM-MSCs) and adipose tissue mesenchymal stem cells (AT-MSCs) on CLI treatment. Methods For the first step, BM-MSCs and AT-MSCs were isolated and characterized for the characteristic MSC phenotypes. Then, femoral artery ligation and total excision of the femoral artery were performed on C57BL/6 mice to create a CLI model. The cells were evaluated for their in vitro and in vivo biological characteristics for CLI cell therapy. In order to determine these characteristics, the following tests were performed: morphology, flow cytometry, differentiation to osteocyte and adipocyte, wound healing assay, and behavioral tests including Tarlov, Ischemia, Modified ischemia, Function and the grade of limb necrosis scores, donor cell survival assay, and histological analysis. Results Our cellular and functional tests indicated that during 28 days after cell transplantation, BM-MSCs had a great effect on endothelial cell migration, muscle restructure, functional improvements, and neovascularization in ischemic tissues compared with AT-MSCs and control groups. Conclusions Allogeneic BM-MSC transplantation resulted in a more effective recovery from critical limb ischemia compared to AT-MSCs transplantation. In fact, BM-MSC transplantation could be considered as a promising therapy for diseases with insufficient angiogenesis including hindlimb ischemia.


2021 ◽  
Vol 22 (13) ◽  
pp. 7058
Author(s):  
Thorsten Kirsch ◽  
Fenglin Zhang ◽  
Olivia Braender-Carr ◽  
Mary K. Cowman

Mesenchymal stem cells (MSCs) obtained from various sources, including bone marrow, have been proposed as a therapeutic strategy for the improvement of tissue repair/regeneration, including the repair of cartilage defects or lesions. Often the highly inflammatory environment after injury or during diseases, however, greatly diminishes the therapeutic and reparative effectiveness of MSCs. Therefore, the identification of novel factors that can protect MSCs against an inflammatory environment may enhance the effectiveness of these cells in repairing tissues, such as articular cartilage. In this study, we investigated whether a peptide (P15-1) that binds to hyaluronan (HA), a major component of the extracellular matrix of cartilage, protects bone-marrow-derived MSCs (BMSCs) in an inflammatory environment. The results showed that P15-1 reduced the mRNA levels of catabolic and inflammatory markers in interleukin-1beta (IL-1β)-treated human BMSCs. In addition, P15-1 enhanced the attachment of BMSCs to HA-coated tissue culture dishes and stimulated the chondrogenic differentiation of the multipotential murine C3H/10T1/2 MSC line in a micromass culture. In conclusion, our findings suggest that P15-1 may increase the capacity of BMSCs to repair cartilage via the protection of these cells in an inflammatory environment and the stimulation of their attachment to an HA-containing matrix and chondrogenic differentiation.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1485
Author(s):  
Adrian Sowka ◽  
Pawel Dobrzyn

Studies of adipose tissue biology have demonstrated that adipose tissue should be considered as both passive, energy-storing tissue and an endocrine organ because of the secretion of adipose-specific factors, called adipokines. Adiponectin is a well-described homeostatic adipokine with metabolic properties. It regulates whole-body energy status through the induction of fatty acid oxidation and glucose uptake. Adiponectin also has anti-inflammatory and antidiabetic properties, making it an interesting subject of biomedical studies. Perivascular adipose tissue (PVAT) is a fat depot that is conterminous to the vascular wall and acts on it in a paracrine manner through adipokine secretion. PVAT-derived adiponectin can act on the vascular wall through endothelial cells and vascular smooth muscle cells. The present review describes adiponectin’s structure, receptors, and main signaling pathways. We further discuss recent studies of the extent and nature of crosstalk between PVAT-derived adiponectin and endothelial cells, vascular smooth muscle cells, and atherosclerotic plaques. Furthermore, we argue whether adiponectin and its receptors may be considered putative therapeutic targets.


2009 ◽  
Vol 87 (5) ◽  
pp. 642-652 ◽  
Author(s):  
Koen E. A. van der Bogt ◽  
Sonja Schrepfer ◽  
Jin Yu ◽  
Ahmad Y. Sheikh ◽  
Grant Hoyt ◽  
...  

2011 ◽  
Vol 75 (9) ◽  
pp. 2060-2061 ◽  
Author(s):  
Yikuan Chen ◽  
Gang Wang ◽  
Lingfang Zeng

Cytotherapy ◽  
2015 ◽  
Vol 17 (6) ◽  
pp. S37
Author(s):  
Cécile Coste ◽  
Virginie Neirinckx ◽  
Anil Sharma ◽  
Bernard Rogister ◽  
François Lallemend ◽  
...  

2021 ◽  
Vol 16 (2) ◽  
pp. 025016
Author(s):  
Martina Travnickova ◽  
Nikola Slepickova Kasalkova ◽  
Antonin Sedlar ◽  
Martin Molitor ◽  
Jana Musilkova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document