Cell Growth Factor and Estrogen Inducing Menstrual Blood-Derived Stem Cells (MenSC) Differentiate into Endometrial Epithelial Cells

2022 ◽  
Vol 12 (3) ◽  
pp. 659-664
Author(s):  
Wei Li ◽  
Tieying Shan ◽  
Jianping Shi ◽  
Zexian Fu ◽  
Shujing Qi ◽  
...  

Extracted MenSC (Menstrual blood-derived stem cells) from female menstrual blood. Added various exogenous factors in-vitro and simulated the female uterine environment to observe how to make MenSC differentiation into Endometrial epithelial cells by artificial induction. MenSCs were divided into 4 groups: 2.5×10−5 mol/L E group, 1.613 nmol/L EGF group, 2.5×10−5 mol/L E+1.613 nmol/L EGF group, control Group (only MenSCs); the relevant indicators of the experiment includes cell staining and Western Blot to detect CK and VIM protein content; RT-PCR to detect CK-19 mRNA and VIM mRNA. The cell staining results showed that E+EGF group had significant differentiation in 7 days and 14 days. CK-19mRNA of E+EGF group was significantly higher than other groups, and the EGF group expression was obviously higher than that of E group, and VIMmRNA expression is opposite to that. The protein expression had the similar performance. MenSC can differentiate into endometrial epithelial cells after induced by E and EFG; and the co-culture of E and EFG can achieve better differentiation, which proves their work together in MenSC differentiate towards endometrial epithelial cells.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xin Chen ◽  
Yi Wu ◽  
Yanling Wang ◽  
Lijun Chen ◽  
Wendi Zheng ◽  
...  

Abstract Background Idiopathic pulmonary fibrosis is a kind of diffuse interstitial lung disease, the pathogenesis of which is unclear, and there is currently a lack of good treatment to improve the survival rate. Human menstrual blood-derived mesenchymal stem cells (MenSCs) have shown great potential in regenerative medicine. This study aimed to explore the therapeutic potential of MenSCs for bleomycin-induced pulmonary fibrosis. Methods We investigated the transplantation of MenSCs in a pulmonary fibrosis mouse model induced by BLM. Mouse was divided into three groups: control group, BLM group, MenSC group. Twenty-one days after MenSC transplantation, we examined collagen content, pathological, fibrosis area in the lung tissue, and the level of inflammatory factors of serum. RNA sequence was used to examine the differential expressed gene between three groups. Transwell coculture experiments were further used to examine the function of MenSCs to MLE-12 cells and mouse lung fibroblasts (MLFs) in vitro. Results We observed that transplantation of MenSCs significantly improves pulmonary fibrosis mouse through evaluations of pathological lesions, collagen deposition, and inflammation. Transwell coculturing experiments showed that MenSCs suppress the proliferation and the differentiation of MLFs and inhibit the apoptosis of MLE-12 cells. Furthermore, antibody array results demonstrated that MenSCs inhibit the apoptosis of MLE-12 cells by suppressing the expression of inflammatory-related cytokines, including RANTES, Eotaxin, GM-CSF, MIP-1γ, MCP-5, CCL1, and GITR. Conclusions Collectively, our results suggested MenSCs have a great potential in the treatment of pulmonary fibrosis, and cytokines revealed in antibody array are expected to become the target of future therapy of MenSCs in clinical treatment of pulmonary fibrosis.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 288-289
Author(s):  
Allison R Harman ◽  
Rebecca Swanson

Abstract Differential prostaglandin secretion from the bovine endometrium can be used as a marker for an embryotropic or embryotoxic uterine environment. Beta-carotene has antioxidant properties and is the precursor for retinol, which has been shown to improve early embryonic development in vivo and in vitro. Furthermore, dietary fatty acid supplementation, specifically eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA) has been shown to alter prostaglandin production. The objective of this study was to determine prostaglandin production of endometrial cells following treatment with beta-carotene, EPA, or DHA. Bovine endometrial epithelial cells were treated for 24 hours with serum-free media supplemented with either 10 µM beta-carotene, 10 µM EPA, 10 µM DHA or ethanol (>1% volume/volume) vehicle control. After treatment, concentrations of PGE2 and PGF2a were analyzed in media via commercially available ELISA kits. Concentrations and ratios of prostaglandins were analyzed via ANOVA using the mixed procedure in SAS version 9.4. Beta-carotene treatment decreased PGE2 (P < 0.0001) and PGF2a (P = 0.0003) concentrations in media compared to controls. However, the ratio of PGE2:PGF2a was not different (P = 0.1203) between beta-carotene and controls. DHA treatment decreased PGE2 (P < 0.0001) concentrations in media but did not alter (P = 0.1079) PGF2a concentrations in media compared to controls. The ratio of PGE2:PGF2a was not different (P = 0.6343) between DHA and controls. EPA treatment did not alter (P = 0.1503) PGE2 concentrations in media compared to controls. Conversely, PGF2a concentrations were decreased (P = 0.0088) in media treated with EPA compared to controls. Therefore, the ratio of PGE2:PGF2a was increased (P = 0.0116) between EPA versus controls. These studies demonstrate that in vitro supplementation of EPA may alter the endometrial synthesis of prostaglandins to be more embryotropic. Therefore, EPA may be therapeutic for in vivo trials to influence the early uterine environment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ryo Yokomizo ◽  
Yukiko Fujiki ◽  
Harue Kishigami ◽  
Hiroshi Kishi ◽  
Tohru Kiyono ◽  
...  

Abstract Background Thin endometrium adversely affects reproductive success rates with fertility treatment. Autologous transplantation of exogenously prepared endometrium can be a promising therapeutic option for thin endometrium; however, endometrial epithelial cells have limited expansion potential, which needs to be overcome in order to make regenerative medicine a therapeutic strategy for refractory thin endometrium. Here, we aimed to perform long-term culture of endometrial epithelial cells in vitro. Methods We prepared primary human endometrial epithelial cells and endometrial stromal cells and investigated whether endometrial stromal cells and human embryonic stem cell-derived feeder cells could support proliferation of endometrial epithelial cells. We also investigated whether three-dimensional culture can be achieved using thawed endometrial epithelial cells and endometrial stromal cells. Results Co-cultivation with the feeder cells dramatically increased the proliferation rate of the endometrial epithelial cells. We serially passaged the endometrial epithelial cells on mouse embryonic fibroblasts up to passage 6 for 4 months. Among the human-derived feeder cells, endometrial stromal cells exhibited the best feeder activity for proliferation of the endometrial epithelial cells. We continued to propagate the endometrial epithelial cells on endometrial stromal cells up to passage 5 for 81 days. Furthermore, endometrial epithelium and stroma, after the freeze-thaw procedure and sequential culture, were able to establish an endometrial three-dimensional model. Conclusions We herein established a model of in vitro cultured endometrium as a potential therapeutic option for refractory thin endometrium. The three-dimensional culture model with endometrial epithelial and stromal cell orchestration via cytokines, membrane-bound molecules, extracellular matrices, and gap junction will provide a new framework for exploring the mechanisms underlying the phenomenon of implantation. Additionally, modified embryo culture, so-called “in vitro implantation”, will be possible therapeutic approaches in fertility treatment.


2016 ◽  
Vol 62 (3) ◽  
pp. 271-278 ◽  
Author(s):  
Md. Rashedul ISLAM ◽  
Kazuki YAMAGAMI ◽  
Yuka YOSHII ◽  
Nobuhiko YAMAUCHI

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Lihua Yin ◽  
Wenxiao Cheng ◽  
Zishun Qin ◽  
Hongdou Yu ◽  
Zhanhai Yu ◽  
...  

This study is to explore the osteogenesis potential of the human periodontal ligament stem cells (hPDLSCs) induced by naringin in vitro and in vitro. The results confirmed that 1 μM naringin performs the best effect and a collection of bone-related genes (RUNX2,COL1A2, OPN, and OCN) had significantly higher expression levels compared to the control group. Furthermore, a typical trabecular structure was observed in vivo, surrounded by a large amount of osteoblasts. These results demonstrated that naringin, at a concentration of 1 μM, can efficiently promote the proliferation and differentiation of hPDLSCs both in vitro and in vivo.


2005 ◽  
Vol 34 (2) ◽  
pp. 517-534 ◽  
Author(s):  
S Hombach-Klonisch ◽  
A Kehlen ◽  
P A Fowler ◽  
B Huppertz ◽  
J F Jugert ◽  
...  

Information on the regulation of steroid hormone receptors and their distinct functions within the human endometrial epithelium is largely unavailable. We have immortalized human primary endometrial epithelial cells (EECs) isolated from a normal proliferative phase endometrium by stably transfecting the catalytic subunit (hTERT) of the human telomerase complex and cultured these hTERT-EECs now for over 350 population doublings. Active hTERT was detected in hTERT-EECs employing the telomerase repeat amplification assay protocol. hTERT-EECs revealed a polarized, non-invasive epithelial phenotype with apical microvilli and production of a basal lamina when grown on a three-dimensional collagen–fibroblast lattice. Employing atomic force microscopy, living hTERT-EECs were shown to produce extracellular matrix (ECM) components and ECM secretion was modified by estrogen and progesterone (P4). hTERT-EECs expressed inducible and functional endogenous estrogen receptor-alpha (ER-alpha) as demonstrated by estrogen response element reporter assays and induction of P4 receptor (PR). P4 treatment down-regulated PR expression, induced MUC-1 gene activity and resulted in increased ER-beta transcriptional activity. Gene activities of cytokines and their receptors interleukin (IL)-6, leukemia inhibitory factor (LIF), IL-11 and IL-6 receptor (IL6-R), LIF receptor and gp130 relevant to implantation revealed a 17 beta-estradiol (E2)-mediated up-regulation of IL-6 and an E2- and P4-mediated up-regulation of IL6-R in hTERT-EECs. Thus, hTERT-EECs may be regarded as a novel in vitro model to investigate the role of human EECs in steroid hormone-dependent normal physiology and pathologies, including implantation failure, endometriosis and endometrial cancer.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yanli Liu ◽  
Fen Yang ◽  
Shengying Liang ◽  
Qing Liu ◽  
Sulei Fu ◽  
...  

Peripheral nerve injuries are typically caused by either trauma or medical disorders, and recently, stem cell-based therapies have provided a promising treatment approach. Menstrual blood-derived endometrial stem cells (MenSCs) are considered an ideal therapeutic option for peripheral nerve repair due to a noninvasive collection procedure and their high proliferation rate and immunological tolerance. Here, we successfully isolated MenSCs and examined their biological characteristics including their morphology, multipotency, and immunophenotype. Subsequent in vitro studies demonstrated that MenSCs express high levels of neurotrophic factors, such as NT3, NT4, BDNF, and NGF, and are capable of transdifferentiating into glial-like cells under conventional induction conditions. Moreover, upregulation of N-cadherin (N-cad) mRNA and protein expression was observed after neurogenic differentiation. In vivo studies clearly showed that N-cad knockdown via in utero electroporation perturbed the migration and maturation of mouse neural precursor cells (NPCs). Finally, a further transfection assay also confirmed that N-cad upregulation in MenSCs results in the expression of S100. Collectively, our results confirmed the paracrine effect of MenSCs on neuroprotection as well as their potential for transdifferentiation into glial-like cells and demonstrated that N-cad upregulation promotes the neurogenic differentiation of MenSCs, thereby providing support for transgenic MenSC-based therapy for peripheral nerve injury.


2019 ◽  
Vol 12 (6) ◽  
pp. 916-924 ◽  
Author(s):  
Erma Safitri ◽  
Mas'ud Hariadi

Aim: Biotechnological culture of hypoxia-conditioned (CH) rat mesenchymal stem cells (rMSC-CH) for testicular failure therapy with low libido improves the functional outcome of the testicle for producing spermatogenic cells and repairs Leydig cells in rats (Rattus norvegicus). Materials and Methods: In the first group (T1), rats with testicular failure and low libido were injected with normoxia-conditioned (CN) rMSCs (21% oxygen); in the second group (T2), rats with testicular failure and low libido were injected with rMSC-CH (1% oxygen); in the negative control group (T–), rats with normal testis were injected with 0.1 mL phosphate-buffered saline (PBS); and in the sham group (TS), rats with testicular failure and low libido were injected with 0.1 mL of PBS. Results: Vascular endothelial growth factor expression, as the homing signal, in the groups T2, T–, T1, and TS was 2.00±0.5%, 2.95±0.4%, 0.33±0.48%, and 0±0%, respectively. The number of cluster of differentiation (CD)34+ and CD45+ cells in the groups T– and TS was <20%, whereas that in T1 and T2 groups was >30% and >80%, respectively, showing the mobilization of hematopoietic stem cells (HSCs). The number of spermatogenic cells (spermatogonia, primary spermatocytes, secondary spermatocytes, and spermatid) decreased significantly (p<0.05) in TS compared with that in T–, T1, and T2, whereas that in T2 did not show a significant (p>0.05) decrease compared to that in T–. The improvement in libido, based on the number of Leydig cells producing the hormone testosterone for libido expression, did not increase in T1, whereas T2 was able to maintain the number of Leydig cells significantly compared to that between TS and T1. Conclusion: rMSC-CH culture for testicular failure with low libido showed improvement in the functional outcome of the testicle and in repairing Leydig cells.


Sign in / Sign up

Export Citation Format

Share Document