Nrf2 Improves Airway Goblet Cell Metaplasia in Chronic Obstructive Pulmonary Disease (COPD) and Its Mechanism

2022 ◽  
Vol 12 (4) ◽  
pp. 739-746
Author(s):  
Zhihong Qiu ◽  
Li Yan ◽  
Juan Xu ◽  
Xiaojun Qian

Objective: The aim of our research was to evaluate Nrf2 in COPD treatment and relative mechanism by vivo study. Materials: The mice were divided into Normal, Model and CCL16 groups. Measuring Pathology and goblet cell number by HE or AB/PAS staining; Evaluating apoptosis cell number by TUNEL assay; using flow separation to analysis inflammatory cells in difference groups; MAPK and NF-κB(p65) protein expression were evaluated by IHC assay in tissues; Total protein concentration of MUC5AC, Nrf2, Bax and Bcl-2 were evaluated by WB assay. Results: Compared with Normal group, the pathology was deteriorate and goblet cell number were significantly up-regulation in Model group, apoptosis goblet cell number were significantly depressed (P < 0.001), lympbocyte rate and hypertrophic rate were significantly down-regulation and Eosinophils rate, Macrophage rate and Neutrophils rate were significantly up-regulation (P < 0.001, respectively) in Model group. By IHC assay, MAPK and NF-κB(p65) proteins expression significantly increased (P < 0.001, respectively) in Model group; by WB assay, MUC5AC and Bcl-2 protein expression were significantly up-regulation and Nrf2 and Bax proteins expression were significantly down-regulation (P < 0.001, respectively) in Model group. Nrf2 supplement, the COPD were significantly improved with relative inflammatory cells rates significantly improving and relative proteins improving. Conclusion: Nrf2 could improve COPD by inducing goblet cell apoptosis increasing via regulation MAPK/NF-κB(p65) pathway in vivo study.

2022 ◽  
Vol 12 (2) ◽  
pp. 279-286
Author(s):  
Zhihong Qiu ◽  
Li Yan ◽  
Juan Xu ◽  
Xiaojun Qian

Purpose: The purpose of this study was to evaluate CC16 in COPD treatment and relative mechanism by vivo study. Materials and methods: The mice were divided into Normal, Model and CC16 groups. Measuring Pathology and goblet cell number by HE or AB/PAS staining; Evaluating apoptosis cell number by TUNEL assay; using flow separation to analysis inflammatory cells in difference groups; MAPK and NF-κB(p65) protein expression were evaluated by IHC assay in tissues; Total protein concentration of MUC5AC, CC16, Bax and Bcl-2 were evaluated by Western Blot (WB) assay. Results: Compared with Normal group, the pathology was deteriorate and goblet cell number were significantly up-regulation in Model group, apoptosis goblet cell number were significantly depressed (P < 0.001), lympbocyte rate and hypertrophic rate were significantly down-regulation and Eosinophils rate, Macrophage rate and Neutrophils rate were significantly up-regulation (P < 0.001, respectively) in Model group. By IHC assay, MAPK and NF-κB(p65) proteins expression were significantly increased (P < 0.001, respectively) in Model group; by WB assay, MUC5AC and Bcl-2 protein expression were significantly up-regulation and CC16 and Bax proteins expression were significantly down-regulation (P < 0.001, respectively) in Model group. CC16 supplement, the COPD were significantly improved with relative inflammatory cells rates significantly improving and relative proteins improving. Conclusion: CC16 could improve COPD by inducing goblet cell apoptosis increasing via regulation MAPK/NF-κB(p65) pathway In Vivo study.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Guido Musch

In recent years, imaging has given a fundamental contribution to our understanding of the pathophysiology of acute lung diseases. Several methods have been developed based on computed tomography (CT), positron emission tomography (PET), and magnetic resonance (MR) imaging that allow regional, in vivo measurement of variables such as lung strain, alveolar size, metabolic activity of inflammatory cells, ventilation, and perfusion. Because several of these methods are noninvasive, they can be successfully translated from animal models to patients. The aim of this paper is to review the advances in knowledge that have been accrued with these imaging modalities on the pathophysiology of acute respiratory distress syndrome (ARDS), ventilator-induced lung injury (VILI), asthma and chronic obstructive pulmonary disease (COPD).


2016 ◽  
Vol 310 (1) ◽  
pp. L8-L23 ◽  
Author(s):  
Mehdi Sellami ◽  
Aïda Meghraoui-Kheddar ◽  
Christine Terryn ◽  
Caroline Fichel ◽  
Nicole Bouland ◽  
...  

Emphysema is the major component of chronic obstructive pulmonary disease (COPD). During emphysema, elastin breakdown in the lung tissue originates from the release of large amounts of elastase by inflammatory cells. Elevated levels of elastin-derived peptides (EP) reflect massive pulmonary elastin breakdown in COPD patients. Only the EP containing the GXXPG conformational motif with a type VIII β-turn are elastin receptor ligands inducing biological activities. In addition, the COOH-terminal glycine residue of the GXXPG motif seems a prerequisite to the biological activity. In this study, we endotracheally instilled C57BL/6J mice with GXXPG EP and/or COOH-terminal glycine deleted-EP whose sequences were designed by molecular dynamics and docking simulations. We investigated their effect on all criteria associated with the progression of murine emphysema. Bronchoalveolar lavages were recovered to analyze cell profiles by flow cytometry and lungs were prepared to allow morphological and histological analysis by immunostaining and confocal microscopy. We observed that exposure of mice to EP elicited hallmark features of emphysema with inflammatory cell accumulation associated with increased matrix metalloproteinases and desmosine expression and of remodeling of parenchymal tissue. We also identified an inactive COOH-terminal glycine deleted-EP that retains its binding-activity to EBP and that is able to inhibit the in vitro and in vivo activities of emphysema-inducing EP. This study demonstrates that EP are key actors in the development of emphysema and that they represent pharmacological targets for an alternative treatment of emphysema based on the identification of EP analogous antagonists by molecular modeling studies.


2020 ◽  
Author(s):  
Nabijan Mohammadtursun ◽  
Qiuping Li ◽  
Muhammadjan Abuduwaki ◽  
Shan Jiang ◽  
Hu Zhang ◽  
...  

Abstract Background: Loki zupa formula is kind of a traditional medicines which used to treat airway diseases, especially those caused by abnormal phlegm, such as cough, asthma and chronic bronchitis. The study aim was to explore the anti-inflammatory and anti-remodeling effects of Loki zupa by using a cigarette-smoke induced rat model of chronic obstructive pulmonary disease.Methods: The rats were divided into five groups: the normal group, the model group, the LZ 4g/kg and LZ8g/kg group, and the positive control group. Rats were exposed to cigarette smoke for 24 weeks to induce a COPD rat model. Lung function was assessed. Histopathological changes were recorded using Haematoxylin-eosin and Masson’s tricrome staining. Mucus hypersecretion was evaluated by PAS staining. Inflammatory factors were measured in blood serum and bronchial alveolar lavage fluid using an enzyme-linked immunosorbent assay. Malondialdehyde and superoxide dismutase and glutathione S—transferase levels were tested by biochemical methods. Gene expression patterns were evaluated using GN-GeneChip Clariom S Array for rat from Affymetrix. And top upregulated and downregulated genes validated by qPCR. And these genes was also compared with gene transcriptomic data from smoker patients with emphysema and non-smokers in GEO dataset. IL-6/PLAGA2A signalling protein expression was assessed by western blot and immunohistochemistry. TGF-β1and smad2/3 signalling expressions were analysed by western Blot.Results Loki zupa improved COPD rats lung function as compared to the model group and pathological changes including inflammatory cell infiltration and goblet cell metaplasia was alleviated in rats treated with Loki zupa Inflammatory factors IL-6, TNF-α, IL-1β and TGF-β1 decreased while significant increase was observed in blood serum IL-10 content in rats treated with Loki zupa . And IL-6 and TNF-α level in bronchial alveolar lavage fluid showed same expression trend in blood serum, while there was no change in MMP-9 content. It also increased antioxidant enzyme SOD and GPX activity while reducing the lipid peroxidation. Gene microarray analysis showed that there were 355 differentially expressed gene in LZ treated COPD rat lung as compared to model group. Both microarray and qPCR results showed that top differentially expressed genes nxt1(up regulated ) and pla2g2a (down regulated) expression were also reversed by LZ treatment. And protein expression level of IL-6 and pla2g2a was also elevated in CS exposed rats while significant reduction was observed in LZ treated rats. Accordingly, Loki zupa inhibited Collagen-1 upstream protein expression of TGF-β/smad2/3 signalling pathway. Conclusion: These results demonstrated that Loki zupa showed protective effects in the lung of the COPD rat model. This mainly because of Loki zupa exerts anti-inflammatory effects by blocking IL-6/pla2g2a signalling and inhibiting inflammatory gene expression and attenuates fibrotic responses by inhibiting TGF-β/smad2/3 signalling pathway.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Daisuke Morichika ◽  
Akihiko Taniguchi ◽  
Naohiro Oda ◽  
Utako Fujii ◽  
Satoru Senoo ◽  
...  

Abstract Background IL-33, which is known to induce type 2 immune responses via group 2 innate lymphoid cells, has been reported to contribute to neutrophilic airway inflammation in chronic obstructive pulmonary disease. However, its role in the pathogenesis of emphysema remains unclear. Methods We determined the role of interleukin (IL)-33 in the development of emphysema using porcine pancreas elastase (PPE) and cigarette smoke extract (CSE) in mice. First, IL-33−/− mice and wild-type (WT) mice were given PPE intratracheally. The numbers of inflammatory cells, and the levels of cytokines and chemokines in the bronchoalveolar lavage (BAL) fluid and lung homogenates, were analyzed; quantitative morphometry of lung sections was also performed. Second, mice received CSE by intratracheal instillation. Quantitative morphometry of lung sections was then performed again. Results Intratracheal instillation of PPE induced emphysematous changes and increased IL-33 levels in the lungs. Compared to WT mice, IL-33−/− mice showed significantly greater PPE-induced emphysematous changes. No differences were observed between IL-33−/− and WT mice in the numbers of macrophages or neutrophils in BAL fluid. The levels of hepatocyte growth factor were lower in the BAL fluid of PPE-treated IL-33−/− mice than WT mice. IL-33−/− mice also showed significantly greater emphysematous changes in the lungs, compared to WT mice, following intratracheal instillation of CSE. Conclusion These observations suggest that loss of IL-33 promotes the development of emphysema and may be potentially harmful to patients with COPD.


1999 ◽  
Vol 87 (3) ◽  
pp. 920-927 ◽  
Author(s):  
Kirby L. Zeman ◽  
Gerhard Scheuch ◽  
Knut Sommerer ◽  
James S. Brown ◽  
William D. Bennett

Effective airway dimensions (EADs) were determined in vivo by aerosol-derived airway morphometry as a function of volumetric lung depth (VLD) to identify and characterize, noninvasively, the caliber of the transitional bronchiole region of the human lung and to compare the EADs by age, gender, and disease. By logarithmically plotting EAD vs. VLD, two distinct regions of the lung emerged that were identified by characteristic line slopes. The intersection of proximal and distal segments was defined as VLDtransand associated EADtrans. In our normal subjects ( n = 20), VLDtrans [345 ± 83 (SD) ml] correlated significantly with anatomic dead space (224 ± 34 ml) and end of phase II of single-breath nitrogen washout (360 ± 53 ml). The corresponding EADtranswas 0.42 ± 0.07 mm, in agreement with other ex vivo measurements of the transitional bronchioles. VLDtrans was smaller (216 ± 64 ml) and EADtrans was larger (0.83 ± 0.04 mm) in our patients with chronic obstructive pulmonary disease ( n = 13). VLDtrans increased with age for children (age 8–18 yr; P = 0.006, n = 26) and with total lung capacity for age 8–81 yr ( P < 0.001, n = 61). This study extends the usefulness of aerosol-derived airway morphometry to in vivo measurements of the transitional bronchioles.


1998 ◽  
Vol 1998 ◽  
pp. 131-131
Author(s):  
J. J. Hyslop ◽  
A. Bayley ◽  
A. L. Tomlinson ◽  
D. Cuddeford

De-hydrated forages are often fed to equids in the UK in place of more traditional grass hay, particularly where individual animals are known to have a sensitivity to dusty, mouldy hay which may play a part inducing respiratory problems such as chronic obstructive pulmonary disease (COPD). One such alternative forage is short-chop de-hydrated grass. However, there is very little information available on voluntary feed intake (VFI), apparent digestibility and nutrient intake parameters when de-hydrated grass is offered to equids compared with traditional grass hay. This study examines the VFI and apparent digestibility in vivo of a short-chop de-hydrated grass compared with a traditional grass hay and determines their ability to meet the predicted energy and protein needs of mature ponies.Six mature Welsh-cross pony geldings with a mean liveweight (LW) of 281 kg (s.e.d. 0.89) were individually housed and offered ad libitum access to either short-chop de-hydrated grass (DHG) or traditional grass hay (HAY) plus 60 g/h/d minerals. The DHG and HAY were made from the same 2nd cut perennial ryegrass sward cut on the same day.


Sign in / Sign up

Export Citation Format

Share Document