Bone Marrow Mesenchymal Stem Cells (BMSCs) Transplantation Ameliorates Joint Severity and Inflammation in Rats with Arthritis

2022 ◽  
Vol 12 (5) ◽  
pp. 1028-1033
Author(s):  
Liangbang Wu ◽  
Zhenhai Hou ◽  
Longbao Zheng ◽  
Zenghui Gu

This study analyzed the action of Bone marrow mesenchymal stem cells (BMSCs) transplantation on arthritis rat model. Arthritis rat model was established using bovine type II collagen and CFA. BMSCs phenotype was assessed by flow cytometry and pathological changes was analyzed by H&E staining along with analysis of joint severity by AI score, inflammation by ELISA as well as level of NPY, MMP-2, and MMP-9. The form of passaged BMSCs was spindle shaped with positive expression of CD29 and CD44. The structure of articular cavity in arthritis rats was disordered with infiltration of inflammatory cells which were ameliorated by BMSCs transplantation. In addition, BMSCs treatment also significantly reduced AI value, the level of VEGF, IL-17 and TNF-α as well as decreased RANK/RANKL expression and increased OPG level. In conclusion, BMSCs transplantation ameliorates inflammation and severity in arthritis rats possibly through regulation of RANK/OPG, indicating that it might be used for the treatment of arthritis patients.

2011 ◽  
Vol 33 (3) ◽  
pp. 331-337 ◽  
Author(s):  
Yufeng Jiang ◽  
Hailong Lv ◽  
Shanshan Huang ◽  
Huiping Tan ◽  
Yinong Zhang ◽  
...  

2021 ◽  
Vol 11 (12) ◽  
pp. 2497-2501
Author(s):  
Sheng Chen ◽  
Meiwen Tian ◽  
Shenwen Liu

Diabetic retinopathy (DR) is a chronic complications and its pathogenesis remains unclear. This study aims to elucidate the underlying mechanism by how bone marrow mesenchymal stem cells (BMSCs) affects DR development in a rat model. A rat model of DR was established and injected with BMSCs overexpressing Cir-ZNF609 and shRNA Cir-ZNF609 to vitreous body followed by analysis of the retinal vascular permeability and macular retinal layers thickness, and the levels of HIF-1α, ICAM-1 and VEGF in rat retina by ELISA and immunohistochemistry. Injection of BMSCs overexpressing Cir-ZNF609 resulted in decreased HIF-1α ICAM-1 and VEGF expression, amelioration of retinal ganglion choriocapillaris injury and reducing ganglion cells. Twelve weeks after treatment, neovascularization took place and fibroblasts appeared with some nucleus disappearing and pigment taking off. Besides, permeability also elevated in the presence of overexpressing Cir-ZNF609 and penetration rate for Evans blue (16.36+3.25, 15.45±3.46 μg/g) was lower than healthy rats (28.66±2.08, 32.24±4.36 μg/g) and controls (26.93±3.03, 33.49±5.02 μg/g) (p < 0.01). Moreover, upregulation of Cir-ZNF609 decreased retinal thickness and macular volume in DR rats (p < 0.05). In conclusion, intravitreal injection of mouse BMSCs overexpressing Cir-ZNF609 alleviates retinal injury and decreases retinal thickness and macular volume, and enhances neovascularization. These evidence provides a novel insight into gene therapy for DR.


2018 ◽  
Vol 26 (3) ◽  
pp. 436-444 ◽  
Author(s):  
Lufen Gao ◽  
Zhongwei Huang ◽  
Haiyingjie Lin ◽  
Yuke Tian ◽  
Ping Li ◽  
...  

2020 ◽  
Author(s):  
Ruixue Wen ◽  
Xin Wang ◽  
Yongchao Lu ◽  
Yi Du ◽  
Xijiao Yu

Abstract Background: To observe the effects of combined application of rat bone marrow mesenchymal stem cells (rBMSCs) and a bioceramic material on pulp-like tissue formation. Methods: Rat incisor root fragments without pulp tissues were prepared and filled with a collagen scaffold seeded with rBMSCs, while one side of the root segment was covered by a bioceramic material (iRoot BP). After culture for 12 h, the root fragments were implanted subcutaneously for 3 months. Hematoxylin and eosin (HE) staining was applied to observe biocompatibility and the formation of pulp-like tissues. Incisor root fragments were divided into three parts (BP1/3 , M1/3, and D1/3) to analyze the area and number of new vessels. Immunohistochemical staining of neuroendocrine marker PGP9.5, dentin sialophosphoprotein ( DSPP ), and vascular endothelial growth factor (VEGF) was applied to observe the formation of pulp-like tissues. Root fragments filled with the collagen scaffold only were used as a control. Results: Three months after implantation, root fragments were collected, which were surrounded by a transparent tissue membrane with a good blood supply. The root fragment cavity was filled with pink vascularized pulp-like tissue. According to HE results, iRoot BP had good biocompatibility with new pulp-like tissues and few infiltrating inflammatory cells. Increases in the number and area of new blood vessels were observed in BP1/3 compared with the other two parts. Expression of PGP9.5 and DSPP showed that the newly formed tissues were similar to normal pulp tissues. Conclusion: iRoot BP has good biocompatibility and increases the number and area of new blood vessels. The combined application of stem cells and bioceramic materials may be a better method for pulp revascularization .


2019 ◽  
Vol 47 (7) ◽  
pp. 3261-3270
Author(s):  
Cheng Wang ◽  
Qiaohui Liu ◽  
Xiaoyuan Ma ◽  
Guofeng Dai

Objective To measure the inductive effect of kartogenin on matrix metalloproteinase-2 levels during the differentiation of human bone marrow mesenchymal stem cells (hMSCs) into chondrocytes in vitro. Methods In vitro cultured bone marrow hMSCs were grown to the logarithmic phase and then divided into three groups: control group (0 µM kartogenin), 1 µM kartogenin group and 10 µM kartogenin group. After 72 h of culture, cell proliferation and differentiation were observed microscopically. Matrix metalloproteinase-2 (MMP-2) in the cell supernatant and type II collagen levels in the cells were detected by enzyme linked immunosorbent assay and immunofluorescence staining, respectively. Results Kartogenin induced the proliferation and differentiation of hMSCs. With the increase of kartogenin concentration, the level of type II collagen was increased, while the level of MMP-2 decreased. Conclusion These findings indicate that kartogenin can induce hMSCs to differentiate into chondrocytes, and with the increase of kartogenin concentration, degeneration of the cartilage extracellular matrix may be inhibited.


Sign in / Sign up

Export Citation Format

Share Document