Core–Shell Structural Barium Ferrite/Polypyrrole Nanocomposites with Enhanced Microwave Absorption Properties

2020 ◽  
Vol 15 (11) ◽  
pp. 1312-1320
Author(s):  
Kai Sun ◽  
Gang Li ◽  
Yan-Hua Lei ◽  
Xin-Feng Wu ◽  
Wei-Guo Zhang ◽  
...  

In this paper, core–shell structural barium ferrite/polypyrrole (BF/PPy) nanocomposites were prepared by a facile in-situ chemical oxidative polymerization method, and their electromagnetic properties were systematically studied. It was demonstrated that the nanocomposites with 15 mol% BF possessed the best electromagnetic wave absorption performance, and a reflection loss of -57.13 dB was achieved at 3.98 mm. Further study revealed that the optimized impedance matching and large attenuation constant were conducive to a good absorption performance. Meanwhile, the combined action of dielectric loss and magnetic loss was responsible for the electromagnetic wave attenuation. This study provides a supplementary approach to microwave absorption materials with a desirable absorption performance.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yongpeng Zhao ◽  
Xueqing Zuo ◽  
Yuan Guo ◽  
Hui Huang ◽  
Hao Zhang ◽  
...  

AbstractRecently, multilevel structural carbon aerogels are deemed as attractive candidates for microwave absorbing materials. Nevertheless, excessive stack and agglomeration for low-dimension carbon nanomaterials inducing impedance mismatch are significant challenges. Herein, the delicate “3D helix–2D sheet–1D fiber–0D dot” hierarchical aerogels have been successfully synthesized, for the first time, by sequential processes of hydrothermal self-assembly and in-situ chemical vapor deposition method. Particularly, the graphene sheets are uniformly intercalated by 3D helical carbon nanocoils, which give a feasible solution to the mentioned problem and endows the as-obtained aerogel with abundant porous structures and better dielectric properties. Moreover, by adjusting the content of 0D core–shell structured particles and the parameters for growth of the 1D carbon nanofibers, tunable electromagnetic properties and excellent impedance matching are achieved, which plays a vital role in the microwave absorption performance. As expected, the optimized aerogels harvest excellent performance, including broad effective bandwidth and strong reflection loss at low filling ratio and thin thickness. This work gives valuable guidance and inspiration for the design of hierarchical materials comprised of dimensional gradient structures, which holds great application potential for electromagnetic wave attenuation. "Image missing"


2021 ◽  
Author(s):  
Hongmei Liu ◽  
Min Zhang ◽  
Kang Hu ◽  
Xiangkai Kong ◽  
Qiang Li ◽  
...  

Abstract In this article, spinel ferrite CoFe2O4 and multi-walled carbon nanotubes (MWCNTs) composites are constructed by a facile one-step solvothermal method. The pure phase of CoFe2O4 particles is confirmed by X-ray diffraction patterns. Microstructure analysis demonstrates that monodisperse CoFe2O4 microspheres are wound by MWCNTs. By the introduction of CNTs, there is a significant enhancement in the imaginary part of permittivity (ε″) with the composites. The champion microwave absorption performance can be achieved in the composites by the balance of complex permittivity and permeability. When the mass fraction of CNTs is 3%, a minimum reflection loss (RLmin) of the composites is as high as -46.65 dB at 14.4 GHz at a thin thickness of 1.5 mm, and the corresponding effective absorption bandwidth below − 10 dB reaches 4.91 GHz ranging from 12.41 to 17.32 GHz which covers almost the whole Ku band (12.0–18.0 GHz). In other words, this as-synthesized composites show the most outstanding specific RLmin of -31.1 dB•mm− 1. Such superior microwave absorption behaviors of CoFe2O4/CNTs originate mainly from multiple dielectric relaxation processes, enhanced impedance matching and magnetic loss, as well as the considerable interface between mesoporous CoFe2O4 hollow microspheres and CNTs, and thereby promoting microwave reflection and scattering within the samples. Our results indicate that as-fabricated CoFe2O4/CNTs composites can be a promising microwave absorbent integrating with thin thickness, strong absorption ability, and broad bandwidth absorption.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4247
Author(s):  
Kyeong-Han Na ◽  
Kyong-Pil Jang ◽  
Sung-Wook Kim ◽  
Won-Youl Choi

Ni0.5Zn0.5Fe2O4 nanofibers with an average diameter of 133.56 ± 12.73 nm were fabricated by electrospinning and calcination. According to our thermogravimetric—differential thermal analysis and X-ray diffraction results, the calcination temperature was 650 °C. The microstructure, crystal structure, and chemical composition of the nanofibers were observed using field-emission scanning electron, X-ray diffraction, and energy-dispersive X-ray spectroscopy. Commercial particle samples and samples containing 10 wt% and 20 wt% nanofibers were fabricated, and the electromagnetic properties were analyzed with a vector network analyzer and a 7.00 mm coaxial waveguide. Regardless of the nanofiber content, Ni0.5Zn0.5Fe2O4 was dominantly affected by the magnetic loss mechanism. Calculation of the return loss based on the transmission line theory confirmed that the electromagnetic wave return loss was improved up to −59.66 dB at 2.75 GHz as the nanofiber content increased. The absorber of mixed compositions with Ni0.5Zn0.5Fe2O4 nanofibers showed better microwave absorption performance. It will be able to enhance the performance of commercial electromagnetic wave absorbers of various types such as paints and panels.


2014 ◽  
Vol 602-603 ◽  
pp. 762-766
Author(s):  
Biao Zhao ◽  
Bing Bing Fan ◽  
Hao Chen ◽  
Xiao Xuan Pian ◽  
Bin Bin Wang ◽  
...  

The composite microspheres with Ni cores and amorphous TiO2 shells (Ni@TiO2) were synthesized by a one-pot solvothermal method at 180°C for 15 h, which used nickel chloride hexahydrate as Ni source andtetrabutyl orthotitanate as Ti source. The Ni/TiO2 core/shell composites were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX). A possible formation mechanism of core-shell Ni/TiO2 was proposed. Furthermore, the microwave absorption properties of these microspheres were investigated in terms of complex permittivity and permeability. The minimum reflection loss is-29.5 dB at 14.4 GHz for a layer of 4.0 mm thickness. Such phenomenon is attributed to the synergy effect between magnetic loss of Ni core and dielectric loss of amorphous TiO2 shell. The enhanced microwave absorption properties are also believed to be due to the unique coreshell structure. All results indicate that these Ni@TiO2 microspheres may be attractive candidate materials for electromagnetic wave absorption applications.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiao Li ◽  
Wenbin You ◽  
Chunyang Xu ◽  
Lei Wang ◽  
Liting Yang ◽  
...  

Highlights Benefiting from the possible “seed-germination” effect, the “seeds” Ni2+ grow into “buds” Ni nanoparticles and “stem” carbon nanotubes (CNTs) from the enlarged “soil” of MXene skeleton. Compared with the traditional magnetic agglomeration, the MXene-CNTs/Ni hybrids exhibit the highly spatial dispersed magnetic architecture. 3D MXene-CNTs/Ni composites hold excellent microwave absorption performance (−56.4 dB at only 2.4 mm). Abstract Ti3C2Tx MXene is widely regarded as a potential microwave absorber due to its dielectric multi-layered structure. However, missing magnetic loss capability of pure MXene leads to the unmatched electromagnetic parameters and unsatisfied impedance matching condition. Herein, with the inspiration from dielectric-magnetic synergy, this obstruction is solved by fabricating magnetic CNTs/Ni hetero-structure decorated MXene substrate via a facile in situ induced growth method. Ni2+ ions are successfully attached on the surface and interlamination of each MXene unit by intensive electrostatic adsorption. Benefiting from the possible “seed-germination” effect, the “seeds” Ni2+ grow into “buds” Ni nanoparticles and “stem” carbon nanotubes (CNTs) from the enlarged “soil” of MXene skeleton. Due to the improved impedance matching condition, the MXene-CNTs/Ni hybrid holds a superior microwave absorption performance of − 56.4 dB at only 2.4 mm thickness. Such a distinctive 3D architecture endows the hybrids: (i) a large-scale 3D magnetic coupling network in each dielectric unit that leading to the enhanced magnetic loss capability, (ii) a massive multi-heterojunction interface structure that resulting in the reinforced polarization loss capability, confirmed by the off-axis electron holography. These outstanding results provide novel ideas for developing magnetic MXene-based absorbers.


2017 ◽  
Vol 268 ◽  
pp. 297-301 ◽  
Author(s):  
Yau Thim Ng ◽  
Wei Kong ◽  
Sivanesan Appadu ◽  
Ing Kong

Magnetite (Fe3O4)-graphene nanohybrids having three different weight ratios of magnetite to graphene were synthesized by a facile in-situ deposition method. The combination of dielectric properties of graphene and magnetic properties of magnetite makes the nanohybrids an ideal choice of material for microwave absorption applications. In regards to that, the electromagnetic properties and microwave absorbing characteristics were investigated in a frequency range of 1-18 GHz. The reflection loss (RL) reaches a minimum of-40.44 dB at 6.84 GHz with a thickness of 7 mm for the sample containing 73 wt·% of Fe3O4. The bandwidth corresponding to the RL below-10 dB is 7.05 GHz. The as-prepared Fe3O4-graphene nanohybrids showed good microwave absorption ability in the low frequency band (C-band) which can be ascribed to improved impedance matching characteristics, enhanced interfacial polarizations as well as the magnetic loss contributions. Moreover, the frequency related to minimum RL could be tuned by varying the weight ratios of magnetite to graphene.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2921 ◽  
Author(s):  
Wei Huang ◽  
Yujiang Wang ◽  
Shicheng Wei ◽  
Bo Wang ◽  
Yi Liang ◽  
...  

Hollow magnetic structures have great potential to be used in the microwave absorbing field. Herein, Fe3O4 hollow spheres with different levels of hollowness were synthesized by the hydrothermal method under Ostwald ripening effect. In addition to their microstructures, the microwave absorption properties of such spheres were investigated. The results show that the grain size and hollowness of Fe3O4 hollow spheres both increase as the reaction time increases. With increasing hollowness, the attenuation ability of electromagnetic wave of Fe3O4 spheres increases first and then decreases, finally increases sharply after the spheres break down. Samples with strong attenuation ability can achieve good impedance matching, which it does preferentially as the absorber thickness increases. Fe3O4 hollow spheres show the best microwave absorption performance when the reaction time is 24 h. The minimum reflection loss (RL (min)) can reach −40 dB, while the thickness is only 3.2 mm.


Sign in / Sign up

Export Citation Format

Share Document