scholarly journals The reversal of motion aftereffects on speed perception on color- and luminance-defined motion tested with various temporal frequency

2019 ◽  
Vol 19 (15) ◽  
pp. 8
Author(s):  
Wakana Koshizaka ◽  
Ichiro Kuriki ◽  
Yasuhiro Hatori ◽  
Chia-huei Tseng ◽  
Satoshi Shioiri
2017 ◽  
Vol 284 (1858) ◽  
pp. 20170673 ◽  
Author(s):  
Irene Senna ◽  
Cesare V. Parise ◽  
Marc O. Ernst

Unlike vision, the mechanisms underlying auditory motion perception are poorly understood. Here we describe an auditory motion illusion revealing a novel cue to auditory speed perception: the temporal frequency of amplitude modulation (AM-frequency), typical for rattling sounds. Naturally, corrugated objects sliding across each other generate rattling sounds whose AM-frequency tends to directly correlate with speed. We found that AM-frequency modulates auditory speed perception in a highly systematic fashion: moving sounds with higher AM-frequency are perceived as moving faster than sounds with lower AM-frequency. Even more interestingly, sounds with higher AM-frequency also induce stronger motion aftereffects. This reveals the existence of specialized neural mechanisms for auditory motion perception, which are sensitive to AM-frequency. Thus, in spatial hearing, the brain successfully capitalizes on the AM-frequency of rattling sounds to estimate the speed of moving objects. This tightly parallels previous findings in motion vision, where spatio-temporal frequency of moving displays systematically affects both speed perception and the magnitude of the motion aftereffects. Such an analogy with vision suggests that motion detection may rely on canonical computations, with similar neural mechanisms shared across the different modalities.


Perception ◽  
1986 ◽  
Vol 15 (5) ◽  
pp. 603-612 ◽  
Author(s):  
Michael J Wright

Adapting to a drifting grating (temporal frequency 4 Hz, contrast 0.4) in the periphery gave rise to a motion aftereffect (MAE) when the grating was stopped. A standard unadapted foveal grating was matched to the apparent velocity of the MAE, and the matching velocity was approximately constant regardless of the visual field position and spatial frequency of the adapting grating. On the other hand, when the MAE was measured by nulling with real motion of the test grating, nulling velocity was found to increase with eccentricity. The nulling velocity was constant when scaled to compensate for changes in the spatial ‘grain’ of the visual field. Thus apparent velocity of MAE is constant across the visual field, but requires a greater velocity of real motion to cancel it in the periphery. This confirms that the mechanism underlying MAE is spatially-scaled with eccentricity, but temporally homogeneous. A further indication of temporal homogeneity is that when MAE is tracked, by matching or by nulling, the time course of temporal decay of the aftereffect is similar for central and for peripheral stimuli.


i-Perception ◽  
2017 ◽  
Vol 8 (3) ◽  
pp. 204166951770797
Author(s):  
Hiroshi Ashida ◽  
Alan Ho ◽  
Akiyoshi Kitaoka ◽  
Stuart Anstis

The perceived speed of a ring of equally spaced dots moving around a circular path appears faster as the number of dots increases (Ho & Anstis, 2013, Best Illusion of the Year contest). We measured this “spinner” effect with radial sinusoidal gratings, using a 2AFC procedure where participants selected the faster one between two briefly presented gratings of different spatial frequencies (SFs) rotating at various angular speeds. Compared with the reference stimulus with 4 c/rev (0.64 c/rad), participants consistently overestimated the angular speed for test stimuli of higher radial SFs but underestimated that for a test stimulus of lower radial SFs. The spinner effect increased in magnitude but saturated rapidly as the test radial SF increased. Similar effects were observed with translating linear sinusoidal gratings of different SFs. Our results support the idea that human speed perception is biased by temporal frequency, which physically goes up as SF increases when the speed is held constant. Hence, the more dots or lines, the greater the perceived speed when they are moving coherently in a defined area.


2018 ◽  
Author(s):  
Cong Shi ◽  
Shrinivas Pundlik ◽  
Gang Luo

AbstractSpeed perception is an important task performed by our visual system in various daily life tasks. In various psychophysical tests, relationship between spatial frequency, temporal frequency, and speed has been examined in human subjects. The role of vision impairment in speed perception has also been previously examined. In this work, we examine the inter-relationship between speed, spatial frequency, low vision conditions, and the type of input motion stimuli in motion perception accuracy. For this purpose, we propose a computational model for speed perception and evaluate it in custom generated natural and stochastic sequences by simulating low-vision conditions (low pass filtering at different cutoff frequencies) as well as complementary vision conditions (high pass versions at the same cutoff frequencies). Our results show that low frequency components are critical for accurate speed perception, whereas high frequencies do not play any important role in speed estimation. Since perception of low frequencies may not be impaired in visual acuity loss, speed perception was not found to be impaired in low vision conditions compared to normal vision condition. We also report significant differences between natural and stochastic stimuli, notably an increase in speed estimation error when using stochastic stimuli compared to natural sequences, emphasizing the use of natural stimuli when performing future psychophysical studies for speed perception.


2008 ◽  
Vol 99 (3) ◽  
pp. 1422-1434 ◽  
Author(s):  
Alexandra Dépeault ◽  
El-Mehdi Meftah ◽  
C. Elaine Chapman

A major challenge for the brain is to extract precise information about the attributes of tactile stimuli from signals that co-vary with multiple parameters, e.g., speed and texture in the case of scanning movements. We determined the ability of humans to estimate the tangential speed of surfaces moved under the stationary fingertip and the extent to which the physical characteristics of the surfaces modify speed perception. Scanning speed ranged from 33 to 110 mm/s (duration of motion constant). Subjects could scale tactile scanning speed, but surface structure was essential because the subjects were poor at scaling the speed of a moving smooth surface. For textured surfaces, subjective magnitude estimates increased linearly across the range of speeds tested. The spatial characteristics of the surfaces influenced speed perception, with the roughest surface (8 mm spatial period, SP) being perceived as moving 15% slower than the smoother, textured surfaces (2–3 mm SP). Neither dot disposition (periodic, non periodic) nor dot density contributed to the results, suggesting that the critical factor was dot spacing in the direction of the scan. A single monotonic relation between subjective speed and temporal frequency (speed/SP) was obtained when the ratings were normalized for SP. This provides clear predictions for identifying those cortical neurons that play a critical role in tactile motion perception and the underlying neuronal code. Finally, the results were consistent with observations in the visual system (decreased subjective speed with a decrease in spatial frequency, 1/SP), suggesting that stimulus motion is processed similarly in both sensory systems.


2008 ◽  
Vol 128 (7) ◽  
pp. 1015-1022
Author(s):  
Sheng Ge ◽  
Makoto Ichikawa ◽  
Atsushi Osa ◽  
Keiji Iramina ◽  
Hidetoshi Miike

Sign in / Sign up

Export Citation Format

Share Document