scholarly journals Dysregulated overexpression of Sox9 induces fibroblast activation in pulmonary fibrosis

JCI Insight ◽  
2021 ◽  
Author(s):  
Prathibha R. Gajjala ◽  
Rajesh K. Kasam ◽  
Divyalakshmi Soundararajan ◽  
Debora Sinner ◽  
Steven K. Huang ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Zhou ◽  
Yang Lin ◽  
Xiuhua Kang ◽  
Zhicheng Liu ◽  
Wei Zhang ◽  
...  

Abstract Background Previous reports have identified that human bone marrow mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) with their cargo microRNAs (miRNAs) are a promising therapeutic approach for the treatment of idiopathic pulmonary fibrosis (IPF). Therefore, we explored whether delivery of microRNA-186 (miR-186), a downregulated miRNA in IPF, by BMSC EVs could interfere with the progression of IPF in a murine model. Methods In a co-culture system, we assessed whether BMSC-EVs modulated the activation of fibroblasts. We established a mouse model of PF to evaluate the in vivo therapeutic effects of BMSC-EVs and determined miR-186 expression in BMSC-EVs by polymerase chain reaction. Using a loss-of-function approach, we examined how miR-186 delivered by BMSC-EVs affected fibroblasts. The putative relationship between miR-186 and SRY-related HMG box transcription factor 4 (SOX4) was tested using luciferase assay. Next, we investigated whether EV-miR-186 affected fibroblast activation and PF by targeting SOX4 and its downstream gene, Dickkopf-1 (DKK1). Results BMSC-EVs suppressed lung fibroblast activation and delayed IPF progression in mice. miR-186 was downregulated in IPF but enriched in the BMSC-EVs. miR-186 delivered by BMSC-EVs could suppress fibroblast activation. Furthermore, miR-186 reduced the expression of SOX4, a target gene of miR-186, and hence suppressed the expression of DKK1. Finally, EV-delivered miR-186 impaired fibroblast activation and alleviated PF via downregulation of SOX4 and DKK1. Conclusion In conclusion, miR-186 delivered by BMSC-EVs suppressed SOX4 and DKK1 expression, thereby blocking fibroblast activation and ameliorating IPF, thus presenting a novel therapeutic target for IPF.


2008 ◽  
Vol 5 (3) ◽  
pp. 311-315 ◽  
Author(s):  
G. J. Laurent ◽  
R. J. McAnulty ◽  
M. Hill ◽  
R. Chambers

2019 ◽  
Vol 5 (5) ◽  
pp. 2417-2429 ◽  
Author(s):  
Aswin Sundarakrishnan ◽  
Heather Zukas ◽  
Jeannine Coburn ◽  
Brian T. Bertini ◽  
Zhiyi Liu ◽  
...  

2020 ◽  
Vol 318 (5) ◽  
pp. L852-L863 ◽  
Author(s):  
Aja Aravamudhan ◽  
Andrew J. Haak ◽  
Kyoung Moo Choi ◽  
Jeffrey A. Meridew ◽  
Nunzia Caporarello ◽  
...  

Idiopathic pulmonary fibrosis (IPF) results in scarring of the lungs by excessive extracellular matrix (ECM) production. Resident fibroblasts are the major cell type involved in ECM deposition. The biochemical pathways that facilitate pathological fibroblast activation leading to aberrant ECM deposition are not fully understood. Tank binding protein kinase-1 (TBK1) is a kinase that regulates multiple signaling pathways and was recently identified as a candidate regulator of fibroblast activation in a large-scale small-interfering RNA (siRNA) screen. To determine the effect of TBK1 on fibroblast activation, TBK1 was inhibited pharmacologically (MRT-68601) and genetically (siRNA) in normal and IPF human lung fibroblasts. Reducing the activity or expression of TBK1 led to reduction in α-smooth muscle actin stress fiber levels by 40–60% and deposition of ECM components collagen I and fibronectin by 50% in TGF-β-stimulated normal and IPF fibroblasts. YAP and TAZ are homologous mechanoregulatory profibrotic transcription cofactors known to regulate fibroblast activation. TBK1 knockdown or inhibition decreased the total and nuclear protein levels of YAP/TAZ. Additionally, low cell-cell contact and increased ECM substrate stiffness augmented the phosphorylation and activation of TBK1, consistent with cues that regulate YAP/TAZ. The action of TBK1 toward YAP/TAZ activation was independent of LATS1/2 and canonical downstream TBK1 signaling mediator IRF3 but dependent on proteasomal machinery of the cell. This study identifies TBK1 as a fibrogenic activator of human pulmonary fibroblasts, suggesting TBK1 may be a novel therapeutic target in pulmonary fibrosis.


2020 ◽  
Author(s):  
Hammad Ghafoor ◽  
Han Chu ◽  
Jie Huang ◽  
Menglin Chen ◽  
Zhangyan Wang ◽  
...  

Abstract Background Pulmonary fibrosis is the sequela of many pulmonary diseases, such as pneumoconiosis and idiopathic pulmonary fibrosis. The principal characteristics of pulmonary fibrosis comprise myofibroblast proliferation, alveolar damage and deposition of extracellular matrix components, which causes abnormal lung structure remodeling and an irreversible decline in lung function; however, the detailed mechanisms remain unclear. The current study focused on the role of ZC3H4, a new member of the zinc finger protein family, in SiO2-induced pulmonary fibrosis. Methods The expression of ZC3H4 and fibroblast activation markers (COL1A1, COL3A1 and ACTA1) was measured by western blotting and immunofluorescence staining after SiO2 exposure (50 µg/cm2). The functional change in fibroblasts was studied with a scratch assay and a 3D migration assay. The CRISPR/Cas9 system was used to explore the regulatory mechanisms of ZC3H4 in pulmonary fibroblast cells. Results The expression levels of ZC3H4 and sigmar1 (a key regulator of ER stress) were increased in pulmonary fibroblast cells and were associated with fibroblast activation, as indicated by the increase in COL1A1, COL3A1 and ACTA1, as well as the migration ability. The SiO2-enhanced fibroblast activation was attenuated by specific knockdown of ZC3H4 and inhibition of ER stress, demonstrating that ZC3H4 activated fibroblasts via the sigmar1/ER stress pathway. Interestingly, an ER stress blockade also inhibited ZC3H4 expression, indicating the positive feedback regulatory mechanism of ER stress on ZC3H4. Conclusions Our results demonstrate that ZC3H4 and sigmar1 might act as novel therapeutic targets for silicosis, providing a reference for further pulmonary fibrosis research.


JCI Insight ◽  
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Vishwaraj Sontake ◽  
Yunguan Wang ◽  
Rajesh K. Kasam ◽  
Debora Sinner ◽  
Geereddy B. Reddy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document