scholarly journals The Emergence of Shallow Easterly Jets within QBO Westerlies

2018 ◽  
Vol 75 (1) ◽  
pp. 21-40 ◽  
Author(s):  
Peter Hitchcock ◽  
Peter H. Haynes ◽  
William J. Randel ◽  
Thomas Birner

A configuration of an idealized general circulation model has been obtained in which a deep, stratospheric, equatorial, westerly jet is established that is spontaneously and quasi-periodically disrupted by shallow easterly jets. Similar to the disruption of the quasi-biennial oscillation (QBO) observed in early 2016, meridional fluxes of wave activity are found to play a central role. The possible relevance of two feedback mechanisms to these disruptions is considered. The first involves the secondary circulation produced in the shear zones on the upper and lower flanks of the easterly jet. This is found to play a role in maintaining the aspect ratio of the emerging easterly jet. The second involves the organization of the eddy fluxes by the mean flow: the presence of a weak easterly anomaly within a tall, tropical, westerly jet is demonstrated to produce enhanced and highly focused wave activity fluxes that reinforce and strengthen the easterly anomalies. The eddies appear to be organized by the formation of strong potential vorticity gradients on the subtropical flanks of the easterly anomaly. Similar wave activity and potential vorticity structures are found in the ERA-Interim for the observed QBO disruption, indicating this second feedback was active then.

2019 ◽  
Vol 76 (5) ◽  
pp. 1203-1226 ◽  
Author(s):  
Yoshio Kawatani ◽  
Kevin Hamilton ◽  
Lesley J. Gray ◽  
Scott M. Osprey ◽  
Shingo Watanabe ◽  
...  

Abstract The impact of stratospheric representation is investigated using the Model for Interdisciplinary Research on Climate Atmospheric General Circulation Model (MIROC-AGCM) run with different model-lid heights and stratospheric vertical resolutions, but unchanged horizontal resolutions (~1.125°) and subgrid parameterizations. One-hundred-year integrations of the model were conducted using configurations with 34, 42, 72, and 168 vertical layers and model-lid heights of ~27 km (L34), 47 km (L42), 47 km (L72), and 100 km (L168). Analysis of the results focused on the Northern Hemisphere in winter. Compared with the L42 model, the L34 model produces a poorer simulation of the stratospheric Brewer–Dobson circulation (BDC) in the lower stratosphere, with weaker polar downwelling and accompanying cold-pole and westerly jet biases. The westerly bias extends into the troposphere and even to the surface. The tropospheric westerlies and zone of baroclinic wave activity shift northward; surface pressure has negative (positive) biases in the high (mid-) latitudes, with concomitant precipitation shifts. The L72 and L168 models generate a quasi-biennial oscillation (QBO) while the L34 and 42 models do not. The L168 model includes the mesosphere, and thus resolves the upper branch of the BDC. The L72 model simulates stronger polar downwelling associated with the BDC than does the L42 model. However, experiments with prescribed nudging of the tropical stratospheric winds suggest differences in the QBO representation cannot account for L72 − L42 differences in the climatological polar night jet structure. The results show that the stratospheric vertical resolution and inclusion of the full middle atmosphere significantly affect tropospheric circulations.


2009 ◽  
Vol 22 (5) ◽  
pp. 1208-1222 ◽  
Author(s):  
Christopher G. Fletcher ◽  
Steven C. Hardiman ◽  
Paul J. Kushner ◽  
Judah Cohen

Abstract Variability in the extent of fall season snow cover over the Eurasian sector has been linked in observations to a teleconnection with the winter northern annular mode pattern. Here, the dynamics of this teleconnection are investigated using a 100-member ensemble of transient integrations of the GFDL atmospheric general circulation model (AM2). The model is perturbed with a simple persisted snow anomaly over Siberia and is integrated from October through December. Strong surface cooling occurs above the anomalous Siberian snow cover, which produces a tropospheric form stress anomaly associated with the vertical propagation of wave activity. This wave activity response drives wave–mean flow interaction in the lower stratosphere and subsequent downward propagation of a negative-phase northern annular mode response back into the troposphere. A wintertime coupled stratosphere–troposphere response to fall season snow forcing is also found to occur even when the snow forcing itself does not persist into winter. Finally, the response to snow forcing is compared in versions of the same model with and without a well-resolved stratosphere. The version with the well-resolved stratosphere exhibits a faster and weaker response to snow forcing, and this difference is tied to the unrealistic representation of the unforced lower-stratospheric circulation in that model.


2016 ◽  
Vol 73 (9) ◽  
pp. 3771-3783 ◽  
Author(s):  
Laura A. Holt ◽  
M. Joan Alexander ◽  
Lawrence Coy ◽  
Andrea Molod ◽  
William Putman ◽  
...  

Abstract This study investigates tropical waves and their role in driving a quasi-biennial oscillation (QBO)-like signal in stratospheric winds in a global 7-km-horizontal-resolution atmospheric general circulation model. The Nature Run (NR) is a 2-yr global mesoscale simulation of the Goddard Earth Observing System Model, version 5 (GEOS-5). In the tropics, there is evidence that the NR supports a broad range of convectively generated waves. The NR precipitation spectrum resembles the observed spectrum in many aspects, including the preference for westward-propagating waves. However, even with very high horizontal resolution and a healthy population of resolved waves, the zonal force provided by the resolved waves is still too low in the QBO region and parameterized gravity wave drag is the main driver of the NR QBO-like oscillation (NR-QBO). The authors suggest that causes include coarse vertical resolution and excessive dissipation. Nevertheless, the very-high-resolution NR provides an opportunity to analyze the resolved wave forcing of the NR-QBO. In agreement with previous studies, large-scale Kelvin and small-scale waves contribute to the NR-QBO driving in eastward shear zones and small-scale waves dominate the NR-QBO driving in westward shear zones. Waves with zonal wavelength < 1000 km account for up to half of the small-scale (<3300 km) resolved wave forcing in eastward shear zones and up to 70% of the small-scale resolved wave forcing in westward shear zones of the NR-QBO.


2016 ◽  
Vol 73 (9) ◽  
pp. 3397-3421 ◽  
Author(s):  
Weiye Yao ◽  
Christiane Jablonowski

Abstract The paper demonstrates that sudden stratospheric warmings (SSWs) can be simulated in an ensemble of dry dynamical cores that miss the typical SSW forcing mechanisms like moist processes, land–sea contrasts, or topography. These idealized general circulation model (GCM) simulations are driven by a simple Held–Suarez–Williamson (HSW) temperature relaxation and low-level Rayleigh friction. In particular, the four dynamical cores of NCAR’s Community Atmosphere Model, version 5 (CAM5), are used, which are the semi-Lagrangian (SLD) and Eulerian (EUL) spectral-transform models and the finite-volume (FV) and the spectral element (SE) models. Three research themes are discussed. First, it is shown that SSW events in such idealized simulations have very realistic flow characteristics that are analyzed via the SLD model. A single vortex-split event is highlighted that is driven by wavenumber-1 and -2 wave–mean flow interactions. Second, the SLD simulations are compared to the EUL, FV, and SE dynamical cores, which sheds light on the impact of the numerical schemes on the circulation. Only SLD produces major SSWs, while others only exhibit minor stratospheric warmings. These differences are caused by SLD’s more vigorous wave–mean flow interactions in addition to a warm pole bias, which leads to relatively weak polar jets in SLD. Third, it is shown that tropical quasi-biennial oscillation (QBO)–like oscillations and SSWs can coexist in such idealized HSW simulations. They are present in the SLD dynamical core that is used to analyze the QBO–SSW interactions via a transformed Eulerian-mean (TEM) analysis. The TEM results provide support for the Holton–Tan effect.


2019 ◽  
Vol 77 (1) ◽  
pp. 149-165 ◽  
Author(s):  
Yixiong Lu ◽  
Tongwen Wu ◽  
Weihua Jie ◽  
Adam A. Scaife ◽  
Martin B. Andrews ◽  
...  

Abstract It is well known that the stratospheric quasi-biennial oscillation (QBO) is forced by equatorial waves with different horizontal/vertical scales, including Kelvin waves, mixed Rossby–gravity (MRG) waves, inertial gravity waves (GWs), and mesoscale GWs, but the relative contribution of each wave is currently not very clear. Proper representation of these waves is critical to the simulation of the QBO in general circulation models (GCMs). In this study, the vertical resolution in the Beijing Climate Center Atmospheric General Circulation Model (BCC-AGCM) is increased to better represent large-scale waves, and a mesoscale GW parameterization scheme, which is coupled to the convective sources, is implemented to provide unresolved wave forcing of the QBO. Results show that BCC-AGCM can spontaneously generate the QBO with realistic periods, amplitudes, and asymmetric features between westerly and easterly phases. There are significant spatiotemporal variations of parameterized convective GWs, largely contributing to a great degree of variability in the simulated QBO. In the eastward wind shear of the QBO at 20 hPa, forcing provided by resolved waves is 0.1–0.2 m s−1 day−1 and forcing provided by parameterized GWs is ~0.15 m s−1 day−1. On the other hand, westward forcings by resolved waves and parameterized GWs are ~0.1 and 0.4–0.5 m s−1 day−1, respectively. It is inferred that the eastward forcing of the QBO is provided by both Kelvin waves and mesoscale convective GWs, whereas the westward forcing is largely provided by mesoscale GWs. MRG waves barely contribute to the formation of the QBO in the model.


2020 ◽  
Author(s):  
Koji Yamazaki ◽  
Tetsu Nakamura ◽  
Jinro Ukita ◽  
Kazuhira Hoshi

Abstract. The quasi-biennial oscillation (QBO) is quasi-periodic oscillation of the tropical zonal wind in the stratosphere. When the tropical lower stratospheric wind is easterly (westerly), the winter Northern Hemisphere (NH) stratospheric polar vortex tends to be weak (strong). This relation is known as Holton–Tan relationship. Several mechanisms for this relationship have been proposed, especially linking the tropics with high-latitudes through stratospheric pathway. Although QBO impacts on the troposphere have been extensively discussed, a tropospheric pathway of the Holton–Tan relationship has not been explored previously. We here propose a tropospheric pathway of the QBO impact, which may partly account for the Holton–Tan relationship in early winter, especially in the November–December period. The study is based on analyses on observational data and results from a simple linear model and atmospheric general circulation model (AGCM) simulations. The mechanism is summarized as follows: the easterly phase of the QBO is accompanied with colder temperature in the tropical tropopause layer, which enhances convective activity over the tropical western Pacific and suppresses over the Indian Ocean, thus enhancing the Walker circulation. This convection anomaly generates Rossby wave train, propagating into the mid-latitude troposphere, which constructively interferences with the climatological stationary waves, especially in wavenumber 1, resulting in enhanced upward propagation of the planetary wave and a weakened polar vortex.


Sign in / Sign up

Export Citation Format

Share Document