Large-eddy simulations of convection initiation over heterogeneous, low terrain

Abstract Large-eddy simulations are conducted to investigate and physically interpret the impacts of heterogeneous, low terrain on deep-convection initiation (CI). The simulations are based on a case of shallow-to-deep convective transition over the Amazon River basin, and use idealized terrains with varying levels of ruggedness. The terrain is designed by specifying its power-spectral shape in wavenumber space, inverting to physical space assuming random phases for all wave modes, and scaling the terrain to have a peak height of 200 m. For the case in question, these modest terrain fields expedite CI by up to 2-3 h, largely due to the impacts of the terrain on the size of, and subcloud support for, incipient cumuli. Terrain-induced circulations enhance subcloud kinetic energy on the mesoscale, which is realized as wider and longer-lived subcloud circulations. When the updraft branches of these circulations breach the level of free convection, they initiate wider and more persistent cumuli that subsequently undergo less entrainment-induced cloud dilution and detrainment-induced mass loss. As a result, the clouds become more vigorous and penetrate deeper into the troposphere. Larger-scale terrains are more effective than smaller-scale terrains in promoting CI because they induce larger enhancements in both the width and the persistence of subcloud updrafts.

Author(s):  
I. Celik ◽  
M. Klein ◽  
J. Janicka

Anticipating that Large Eddy Simulations will increasingly become the future engineering tool for research, development and design, it is deemed necessary to formulate some quality assessment measures that can be used to judge the resolution of turbulent scales and the accuracy of predictions. In this context some new and refined measures are proposed above and beyond those already published by the authors in the common literature. These new measures involve (a) fraction of total turbulent kinetic energy, (b) relative grid size with respect to Kolmogorov or Taylor scales, (c) relative effective sub-grid/numerical viscosity with respect to molecular viscosity, and (d) some property related to power spectra of turbulent kinetic energy. In addition, an attempt is made to segregate the contributions from numerical and modeling errors. Proposed measures are applied to various benchmark cases, and validated against fully resolved LES and/or DNS whenever possible. Along the same line of thinking, the authors present a perspective for verification of under-resolved direct numerical simulations.


2016 ◽  
Vol 73 (10) ◽  
pp. 4021-4041 ◽  
Author(s):  
Davide Panosetti ◽  
Steven Böing ◽  
Linda Schlemmer ◽  
Jürg Schmidli

Abstract On summertime fair-weather days, thermally driven wind systems play an important role in determining the initiation of convection and the occurrence of localized precipitation episodes over mountainous terrain. This study compares the mechanisms of convection initiation and precipitation development within a thermally driven flow over an idealized double-ridge system in large-eddy (LESs) and convection-resolving (CRM) simulations. First, LES at a horizontal grid spacing of 200 m is employed to analyze the developing circulations and associated clouds and precipitation. Second, CRM simulations at horizontal grid length of 1 km are conducted to evaluate the performance of a kilometer-scale model in reproducing the discussed mechanisms. Mass convergence and a weaker inhibition over the two ridges flanking the valley combine with water vapor advection by upslope winds to initiate deep convection. In the CRM simulations, the spatial distribution of clouds and precipitation is generally well captured. However, if the mountains are high enough to force the thermally driven flow into an elevated mixed layer, the transition to deep convection occurs faster, precipitation is generated earlier, and surface rainfall rates are higher compared to the LES. Vertical turbulent fluxes remain largely unresolved in the CRM simulations and are underestimated by the model, leading to stronger upslope winds and increased horizontal moisture advection toward the mountain summits. The choice of the turbulence scheme and the employment of a shallow convection parameterization in the CRM simulations change the strength of the upslope winds, thereby influencing the simulated timing and intensity of convective precipitation.


Author(s):  
Mohammad Khalid Hossen ◽  
Asokan Mulayath Variyath ◽  
Jahrul M Alam

In large eddy simulation (LES) of turbulent flows, the most critical dynamical processes to be considered by dynamic subgrid models to account for an average cascade of kinetic energy from the largest to the smallest scales of the flow is not fully clear. Furthermore, evidence of vortex stretching being the primary mechanism of the cascade is not out of the question. In this article, we study some essential statistical characteristics of vortex stretching and its role in dynamic approaches of modeling subgrid-scale turbulence. We have compared the interaction of subgrid stresses with the filtered quantities among four models using invariants of the velocity gradient tensor. This technique is a single unified approach to studying a wide range of length scales in the turbulent flow. In addition, it also provides a rational basis for the statistical characteristics a subgrid model must serve in physical space to ensure an appropriate cascade of kinetic energy. Results indicate that the stretching mechanism extracts energy from the large-scale straining motion and passes it onto small-scale stretched vortices.


2014 ◽  
Vol 71 (2) ◽  
pp. 716-733 ◽  
Author(s):  
Björn Maronga

Abstract Large-eddy simulations (LESs) of free-convective to near-neutral boundary layers are used to investigate the surface-layer turbulence. The article focuses on the Monin–Obukhov similarity theory (MOST) relationships that relate the structure parameters of temperature and humidity to the surface fluxes of sensible and latent heat, respectively. Moreover, the applicability of local free convection (LFC) similarity scaling is studied. The LES data suggest that the MOST function for is universal. It is shown to be within the range of the functions proposed from measurement data. It is found that follows MOST if entrainment of dry air from the free atmosphere is sufficiently small. In this case the similarity functions for and are identical. If entrainment is significant, dissimilarity between the transport of sensible heat and moisture is observed and no longer follows MOST. In the free-convection limit the LFC similarity functions should collapse to universal constants. The LES data suggest values around 2.7, which is in agreement with the value proposed in the literature. As for MOST, the LFC similarity constant for becomes nonuniversal if entrainment of dry air is significant. It is shown that LFC scaling is applicable even if shear production of turbulence is moderately high.


Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 92 ◽  
Author(s):  
Aarne Lees ◽  
Hussein Aluie

The role of baroclinicity, which arises from the misalignment of pressure and density gradients, is well-known in the vorticity equation, yet its role in the kinetic energy budget has never been obvious. Here, we show that baroclinicity appears naturally in the kinetic energy budget after carrying out the appropriate scale decomposition. Strain generation by pressure and density gradients, both barotropic and baroclinic, also results from our analysis. These two processes underlie the recently identified mechanism of “baropycnal work”, which can transfer energy across scales in variable density flows. As such, baropycnal work is markedly distinct from pressure-dilatation into which the former is implicitly lumped in Large Eddy Simulations. We provide numerical evidence from 1024 3 direct numerical simulations of compressible turbulence. The data shows excellent pointwise agreement between baropycnal work and the nonlinear model we derive, supporting our interpretation of how it operates.


2017 ◽  
Vol 122 (7) ◽  
pp. 3953-3974 ◽  
Author(s):  
Nicholas K. Heath ◽  
Henry E. Fuelberg ◽  
Simone Tanelli ◽  
F. Joseph Turk ◽  
R. Paul Lawson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document