scholarly journals Evaluation of CLASS Snow Simulation over Eastern Canada

2017 ◽  
Vol 18 (5) ◽  
pp. 1205-1225 ◽  
Author(s):  
Diana Verseghy ◽  
Ross Brown ◽  
Libo Wang

Abstract The Canadian Land Surface Scheme (CLASS), version 3.6.1, was run offline for the period 1990–2011 over a domain centered on eastern Canada, driven by atmospheric forcing data dynamically downscaled from ERA-Interim using the Canadian Regional Climate Model. The precipitation inputs were adjusted to replicate the monthly average precipitation reported in the CRU observational database. The simulated fractional snow cover and the surface albedo were evaluated using NOAA Interactive Multisensor Snow and Ice Mapping System and MODIS data, and the snow water equivalent was evaluated using CMC, Global Snow Monitoring for Climate Research (GlobSnow), and Hydro-Québec products. The modeled fractional snow cover agreed well with the observational estimates. The albedo of snow-covered areas showed a bias of up to −0.15 in boreal forest regions, owing to neglect of subgrid-scale lakes in the simulation. In June, conversely, there was a positive albedo bias in the remaining snow-covered areas, likely caused by neglect of impurities in the snow. The validation of the snow water equivalent was complicated by the fact that the three observation-based datasets differed widely. Also, the downward adjustment of the forcing precipitation clearly resulted in a low snow bias in some regions. However, where the density of the observations was high, the CLASS snow model was deemed to have performed well. Sensitivity tests confirmed the satisfactory behavior of the current parameterizations of snow thermal conductivity, snow albedo refreshment threshold, and limiting snow depth and underlined the importance of snow interception by vegetation. Overall, the study demonstrated the necessity of using a wide variety of observation-based datasets for model validation.

2017 ◽  
Vol 18 (9) ◽  
pp. 2425-2452 ◽  
Author(s):  
Rachel R. McCrary ◽  
Seth McGinnis ◽  
Linda O. Mearns

Abstract This study evaluates snow water equivalent (SWE) over North America in the reanalysis-driven NARCCAP regional climate model (RCM) experiments. Examination of SWE in these runs allows for the identification of bias due to RCM configuration, separate from inherited GCM bias. SWE from the models is compared to SWE from a new ensemble observational product to evaluate the RCMs’ ability to capture the magnitude, spatial distribution, duration, and timing of the snow season. This new dataset includes data from 14 different sources in five different types. Consideration of the associated uncertainty in observed SWE strongly influences the appearance of bias in RCM-generated SWE. Of the six NARCCAP RCMs, the version of MM5 run by Iowa State University (MM5I) is found to best represent SWE despite its use of the Noah land surface model. CRCM overestimates SWE because of cold temperature biases and surface temperature parameterization options, while RegCM3 (RCM3) does so because of excessive precipitation. HadRM3 (HRM3) underestimates SWE because of warm temperature biases, while in the version of WRF using the Grell scheme (WRFG) and ECPC-RSM (ECP2), the misrepresentation of snow in the Noah land surface model plays the dominant role in SWE bias, particularly in ECP2 where sublimation is too high.


2012 ◽  
Vol 6 (6) ◽  
pp. 4637-4671
Author(s):  
K. Klehmet ◽  
B. Geyer ◽  
B. Rockel

Abstract. This study analyzes the added value of a regional climate model hindcast of CCLM compared to global reanalyses in providing a reconstruction of recent past snow water equivalent (SWE) for Siberia. Consistent regional climate data in time and space is necessary due to lack of station data in that region. We focus on SWE since it represents an important snow cover parameter in a region where snow has the potential to feed back to the climate of the whole Northern Hemisphere. The simulation was performed in a 50 km grid spacing for the period 1948 to 2010 using NCEP Reanalysis 1 as boundary forcing. Daily observational reference data for the period of 1987–2010 was obtained by the satellite derived SWE product of ESA DUE GlobSnow that enables a large scale assessment. The analyses includes comparisons of the distribution of snow cover extent, example time series of monthly SWE for January and April, regional characteristics of long-term monthly mean, standard deviation and temporal correlation averaged over subregions. SWE of CCLM is compared against the SWE information of NCEP-R1 itself and three more reanalyses (NCEP-R2, NCEP-CFSR, ERA-Interim). We demonstrate a significant added value of the CCLM hindcast during snow accumulation period shown for January for many subregions compared to SWE of NCEP-R1. NCEP-R1 mostly underestimates SWE during whole snow season. CCLM overestimates SWE compared to the satellite-derived product during April – a month representing the beginning of snow melt in southern regions. We illustrate that SWE of the regional hindcast is more consistent in time than ERA-Interim and NCEP-R2 and thus add realistic detail.


2018 ◽  
Vol 31 (6) ◽  
pp. 2093-2113 ◽  
Author(s):  
Justin R. Minder ◽  
Theodore W. Letcher ◽  
Changhai Liu

The character and causes of elevation-dependent warming (EDW) of surface temperatures are examined in a suite of high-resolution ([Formula: see text] km) regional climate model (RCM) simulations of climate change over the Rocky Mountains using the Weather Research and Forecasting Model. A clear EDW signal is found over the region, with warming enhanced in certain elevation bands by as much as 2°C. During some months warming maximizes at middle elevations, whereas during others it increases monotonically with elevation or is nearly independent of elevation. Simulated EDW is primarily caused by the snow albedo feedback (SAF). Warming maximizes in regions of maximum snow loss and albedo reduction. The role of the SAF is confirmed by sensitivity experiments wherein the SAF is artificially suppressed. The elevation dependence of free-tropospheric warming appears to play a secondary role in shaping EDW. No evidence is found for a contribution from elevation-dependent water vapor feedbacks. Sensitivity experiments show that EDW depends strongly on certain aspects of RCM configuration. Simulations using 4- and 12-km horizontal grid spacings show similar EDW signals, but substantial differences are found when using a grid spacing of 36 km due to the influence of terrain resolution on snow cover and the SAF. Simulations using the Noah and Noah-MP land surface models (LSMs) exhibit large differences in EDW. These are caused by differences between LSMs in their representations of midelevation snow extent and in their parameterization of subpixel fractional snow cover. These lead to albedo differences that act to modulate the simulated SAF and its effect on EDW.


2012 ◽  
Vol 6 (4) ◽  
pp. 785-805 ◽  
Author(s):  
M. Rousselot ◽  
Y. Durand ◽  
G. Giraud ◽  
L. Mérindol ◽  
I. Dombrowski-Etchevers ◽  
...  

Abstract. In this study, snowpack scenarios are modelled across the French Alps using dynamically downscaled variables from the ALADIN Regional Climate Model (RCM) for the control period (1961–1990) and three emission scenarios (SRES B1, A1B and A2) for the mid- and late 21st century (2021–2050 and 2071–2100). These variables are statistically adapted to the different elevations, aspects and slopes of the Alpine massifs. For this purpose, we use a simple analogue criterion with ERA40 series as well as an existing detailed climatology of the French Alps (Durand et al., 2009a) that provides complete meteorological fields from the SAFRAN analysis model. The resulting scenarios of precipitation, temperature, wind, cloudiness, longwave and shortwave radiation, and humidity are used to run the physical snow model CROCUS and simulate snowpack evolution over the massifs studied. The seasonal and regional characteristics of the simulated climate and snow cover changes are explored, as is the influence of the scenarios on these changes. Preliminary results suggest that the snow water equivalent (SWE) of the snowpack will decrease dramatically in the next century, especially in the Southern and Extreme Southern parts of the Alps. This decrease seems to result primarily from a general warming throughout the year, and possibly a deficit of precipitation in the autumn. The magnitude of the snow cover decline follows a marked altitudinal gradient, with the highest altitudes being less exposed to climate change. Scenario A2, with its high concentrations of greenhouse gases, results in a SWE reduction roughly twice as large as in the low-emission scenario B1 by the end of the century. This study needs to be completed using simulations from other RCMs, since a multi-model approach is essential for uncertainty analysis.


2012 ◽  
Vol 6 (1) ◽  
pp. 171-210 ◽  
Author(s):  
M. Rousselot ◽  
Y. Durand ◽  
G. Giraud ◽  
L. Mérindol ◽  
I. Dombrowski-Etchevers ◽  
...  

Abstract. In this study, snowpack scenarios are modelled across the French Alps using dynamically downscaled variables from the ALADIN Regional Climate Model (RCM) for the control period (1961–1990) and three emission scenarios (SRES B1, A1B and A2) by the mid- and late of the 21st century (2021–2050 and 2071–2100). These variables are statistically adapted to the different elevations, aspects and slopes of the alpine massifs. For this purpose, we use a simple analogue criterion with ERA40 series as well as an existing detailed climatology of the French Alps (Durand et al., 2009a) that provides complete meteorological fields from the SAFRAN analysis model. The resulting scenarios of precipitation, temperature, wind, cloudiness, longwave and shortwave radiation, and humidity are used to run the physical snow model CROCUS and simulate snowpack evolution over the massifs studied. The seasonal and regional characteristics of the simulated climate and snow cover changes are explored, as is the influence of the scenarios on these changes. Preliminary results suggest that the Snow Water Equivalent (SWE) of the snowpack will decrease dramatically in the next century, especially in the Southern and Extreme Southern part of the Alps. This decrease seems to result primarily from a general warming throughout the year, and possibly a deficit of precipitation in the autumn. The magnitude of the snow cover decline follows a marked altitudinal gradient, with the highest altitudes being less exposed to climate change. Scenario A2, with its high concentrations of greenhouse gases, results in a SWE reduction roughly twice as large as in the low-emission scenario B1 by the end of the century. This study needs to be completed using simulations from other RCMs, since a multi-model approach is essential for uncertainty analysis.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
X. Zhou ◽  
H. Matthes ◽  
A. Rinke ◽  
K. Klehmet ◽  
B. Heim ◽  
...  

This paper evaluates the simulated Arctic land snow cover duration, snow water equivalent, snow cover fraction, surface albedo, and land surface temperature in the regional climate model HIRHAM5 during 2008–2010, compared with various satellite and reanalysis data and one further regional climate model (COSMO-CLM). HIRHAM5 shows a general agreement in the spatial patterns and annual course of these variables, although distinct biases for specific regions and months are obvious. The most prominent biases occur for east Siberian deciduous forest albedo, which is overestimated in the simulation for snow covered conditions in spring. This may be caused by the simplified albedo parameterization (e.g., nonconsideration of different forest types and neglecting the effect of fallen leaves and branches on snow for deciduous tree forest). The land surface temperature biases mirror the albedo biases in their spatial and temporal structures. The snow cover fraction and albedo biases can explain the simulated land surface temperature bias of ca. −3°C over the Siberian forest area in spring.


2017 ◽  
Vol 11 (4) ◽  
pp. 1647-1664 ◽  
Author(s):  
Emmy E. Stigter ◽  
Niko Wanders ◽  
Tuomo M. Saloranta ◽  
Joseph M. Shea ◽  
Marc F. P. Bierkens ◽  
...  

Abstract. Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water equivalent (SWE). Therefore, in this study remotely sensed snow cover was combined with in situ observations and a modified version of the seNorge snow model to estimate (climate sensitivity of) SWE and snowmelt runoff in the Langtang catchment in Nepal. Snow cover data from Landsat 8 and the MOD10A2 snow cover product were validated with in situ snow cover observations provided by surface temperature and snow depth measurements resulting in classification accuracies of 85.7 and 83.1 % respectively. Optimal model parameter values were obtained through data assimilation of MOD10A2 snow maps and snow depth measurements using an ensemble Kalman filter (EnKF). Independent validations of simulated snow depth and snow cover with observations show improvement after data assimilation compared to simulations without data assimilation. The approach of modeling snow depth in a Kalman filter framework allows for data-constrained estimation of snow depth rather than snow cover alone, and this has great potential for future studies in complex terrain, especially in the Himalayas. Climate sensitivity tests with the optimized snow model revealed that snowmelt runoff increases in winter and the early melt season (December to May) and decreases during the late melt season (June to September) as a result of the earlier onset of snowmelt due to increasing temperature. At high elevation a decrease in SWE due to higher air temperature is (partly) compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the changes in the spatial distribution of precipitation along with changes in temperature.


2016 ◽  
Vol 17 (5) ◽  
pp. 1467-1488 ◽  
Author(s):  
Reinel Sospedra-Alfonso ◽  
Lawrence Mudryk ◽  
William Merryfield ◽  
Chris Derksen

Abstract The ability of the Canadian Seasonal to Interannual Prediction System (CanSIPS) to provide realistic forecast initial conditions for snow cover is assessed using in situ measurements and gridded snow analyses. Forecast initial conditions for snow in CanCM3 and CanCM4 employed by CanSIPS are determined by the response of the Canadian Land Surface Scheme (CLASS) used in both models to forcing from model atmospheric fields constrained by assimilation of 6-hourly reanalysis data. These snow initial conditions are found to be representative of the daily climatology of snow water equivalent (SWE) as well as interannual variations in maximum SWE and the timing of snow onset and snowmelt observed at eight in situ measurement sites located across Canada. The level of this agreement is similar to that of three independent gridded snow analyses (MERRA, the European Space Agency’s GlobSnow, and an offline forced version of CLASS). Total Northern Hemisphere snow mass generated by the CanSIPS initialization procedure is larger for both models (especially CanCM3) than in MERRA, mostly because of higher SWE in regions of common snow cover. Globally, the interannual variability of initial SWE is found to correlate highly with that of MERRA in locations with appreciable snow. These initial values are compared to SWE in freely running CanCM3 and CanCM4 simulations produced without data assimilation of atmospheric fields. Differences in climatological SWE relative to MERRA are similar in the freely running and assimilating CanCM3 and CanCM4 simulations, suggesting that inherent model biases are a major contributor to biases in CanSIPS snow initial conditions.


2009 ◽  
Vol 10 (1) ◽  
pp. 130-148 ◽  
Author(s):  
Benjamin F. Zaitchik ◽  
Matthew Rodell

Abstract Snow cover over land has a significant impact on the surface radiation budget, turbulent energy fluxes to the atmosphere, and local hydrological fluxes. For this reason, inaccuracies in the representation of snow-covered area (SCA) within a land surface model (LSM) can lead to substantial errors in both offline and coupled simulations. Data assimilation algorithms have the potential to address this problem. However, the assimilation of SCA observations is complicated by an information deficit in the observation—SCA indicates only the presence or absence of snow, not snow water equivalent—and by the fact that assimilated SCA observations can introduce inconsistencies with atmospheric forcing data, leading to nonphysical artifacts in the local water balance. In this paper, a novel assimilation algorithm is presented that introduces Moderate Resolution Imaging Spectroradiometer (MODIS) SCA observations to the Noah LSM in global, uncoupled simulations. The algorithm uses observations from up to 72 h ahead of the model simulation to correct against emerging errors in the simulation of snow cover while preserving the local hydrologic balance. This is accomplished by using future snow observations to adjust air temperature and, when necessary, precipitation within the LSM. In global, offline integrations, this new assimilation algorithm provided improved simulation of SCA and snow water equivalent relative to open loop integrations and integrations that used an earlier SCA assimilation algorithm. These improvements, in turn, influenced the simulation of surface water and energy fluxes during the snow season and, in some regions, on into the following spring.


2019 ◽  
Author(s):  
Abbas Fayad ◽  
Simon Gascoin

Abstract. In many Mediterranean mountain regions, the seasonal snowpack is an essential yet poorly known water resource. Here, we examine, for the first time, the spatial distribution and evolution of the snow water equivalent (SWE) during three snow seasons (2013–2016) in the coastal mountains of Lebanon. We run SnowModel (Liston and Elder, 2006a), a spatially-distributed, process-based snow model, at 100 m resolution forced by new automatic weather station (AWS) data in three snow-dominated basins of Mount Lebanon. We evaluate a recent upgrade of the liquid water percolation scheme in SnowModel, which was introduced to improve the simulation of the snow water equivalent (SWE) and runoff in warm maritime regions. The model is evaluated against continuous snow depth and snow albedo observations at the AWS, manual SWE measurements, and MODIS snow cover area between 1200 m and 3000 m a.s.l.. The results show that the new percolation scheme yields better performance especially in terms of SWE but also in snow depth and snow cover area. Over the simulation period between 2013 and 2016, the maximum snow mass was reached between December and March. Peak mean SWE (above 1200 m a.s.l.) changed significantly from year to year in the three study catchments with values ranging between 73 mm and 286 mm we (RMSE between 160 and 260 mm w.e.). We suggest that the major sources of uncertainty in simulating the SWE, in this warm Mediterranean climate, can be attributed to forcing error but also to our limited understanding of the separation between rain and snow at lower-elevations, the transient snow melt events during the accumulation season, and the high-variability of snow depth patterns at the sub-pixel scale due to the wind-driven blown-snow redistribution into karstic features and sinkholes. Yet, the use of a process-based snow model with minimal requirements for parameter estimation provides a basis to simulate snow mass SWE in non-monitored catchments and characterize the contribution of snowmelt to the karstic groundwater recharge in Lebanon. While this research focused on three basins in the Mount Lebanon, it serves as a case study to highlight the importance of wet snow processes to estimate SWE in Mediterranean mountain regions.


Sign in / Sign up

Export Citation Format

Share Document