scholarly journals Comprehensive Evaluation of the Variable Infiltration Capacity (VIC) Model in the North American Land Data Assimilation System

2018 ◽  
Vol 19 (11) ◽  
pp. 1853-1879 ◽  
Author(s):  
Youlong Xia ◽  
David M. Mocko ◽  
Shugong Wang ◽  
Ming Pan ◽  
Sujay V. Kumar ◽  
...  

Abstract Since the second phase of the North American Land Data Assimilation System (NLDAS-2) was operationally implemented at NOAA/NCEP as part of the production suite in August 2014, developing the next phase of NLDAS has been a key focus of the NCEP and NASA NLDAS teams. The Variable Infiltration Capacity (VIC) model is one of the four land surface models of the NLDAS system. The current operational NLDAS-2 uses version 4.0.3 (VIC403), the research NLDAS-2 used version 4.0.5 (VIC405), and the NASA Land Information System (LIS)-based NLDAS uses version 4.1.2.l (VIC412). The purpose of this study is to evaluate VIC403 and VIC412 and check if the latter version has better performance for the next phase of NLDAS. Toward this, a comprehensive evaluation was conducted, targeting multiple variables and using multiple metrics to assess the performance of different model versions. The evaluation results show large and significant improvements in VIC412 over the southeastern United States when compared with VIC403 and VIC405. In other regions, there are very limited improvements or even deterioration to some degree. This is partially due to 1) the sparseness of USGS streamflow observations for model parameter calibration and 2) a deterioration of VIC model performance in the Great Plains (GP) region after a model upgrade to a newer version. Overall, the model upgrade enhances model performance and skill scores for most parts of the continental United States; exceptions include the GP and western mountainous regions, as well as the daily soil moisture simulation skill, suggesting that VIC model development is on the right path. Further efforts are needed for scientific understanding of land surface physical processes in the GP, and a recalibration of VIC412 using reasonable reference datasets is recommended.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jacob R. Schaperow ◽  
Dongyue Li ◽  
Steven A. Margulis ◽  
Dennis P. Lettenmaier

AbstractHydrologic models predict the spatial and temporal distribution of water and energy at the land surface. Currently, parameter availability limits global-scale hydrologic modelling to very coarse resolution, hindering researchers from resolving fine-scale variability. With the aim of addressing this problem, we present a set of globally consistent soil and vegetation parameters for the Variable Infiltration Capacity (VIC) model at 1/16° resolution (approximately 6 km at the equator), with spatial coverage from 60°S to 85°N. Soil parameters derived from interpolated soil profiles and vegetation parameters estimated from space-based MODIS measurements have been compiled into input files for both the Classic and Image drivers of the VIC model, version 5. Geographical subsetting codes are provided, as well. Our dataset provides all necessary land surface parameters to run the VIC model at regional to global scale. We evaluate VICGlobal’s ability to simulate the water balance in the Upper Colorado River basin and 12 smaller basins in the CONUS, and their ability to simulate the radiation budget at six SURFRAD stations in the CONUS.


2019 ◽  
Author(s):  
Ning Zhang ◽  
Steven M. Quiring ◽  
Trent W. Ford

Abstract. Soil moisture can be obtained from in-situ measurements, satellite observations, and model simulations. This study evaluates different methods of combining model, satellite, and in-situ soil moisture data to provide an accurate and spatially-continuous soil moisture product. Three independent soil moisture datasets are used, including an in situ-based product that uses regression kriging (RK) with precipitation, SMAP L4 soil moisture, and model-simulated soil moisture from the Noah model as part of the North American Land Data Assimilation System. Triple collocation (TC), relative error variance (REV), and RK were used to estimate the error variance of each parent dataset, based on which the least squares weighting (LSW) was applied to blend the parent datasets. These results were also compared with that using simple average (AVE). The results indicated no significant differences between blended soil moisture datasets using errors estimated from TC, REV or RK. Moreover, the LSW did not outperform AVE. The SMAP L4 data have a significant negative bias (−18 %) comparing with in-situ measurements, and in-situ measurements are valuable for improving the accuracy of hybrid results. In addition, datasets using anomalies and percentiles have smaller errors than using volumetric water content, mainly due to the reduced bias. Finally, the in situ-based soil moisture and the simple-averaged product from in situ-based and Noah soil moisture are the two optimal datasets for soil moisture mapping. The in situ-based product performs better when the sample density is high, while the simple-averaged product performs better when the station density is low, or measurement sites are less representative.


2020 ◽  
pp. 059
Author(s):  
Stéphane Bélair ◽  
Aaron Boone

La représentation des processus physiques associés aux surfaces continentales, incluant les échanges de chaleur, d'humidité et de quantité de mouvement avec l'atmosphère, ainsi que l'analyse des conditions initiales pour ses principales variables influencent de manière substantielle la prévision atmosphérique près de la surface, en plus d'avoir un impact sur la production de nuages et des précipitations. Comment les surfaces continentales sont-elles représentées dans les modèles de prévision numérique du temps ? Quelles sont les problématiques propres à la prévision numérique du temps dans cette représentation ? Ces questions sont examinées dans cet article en utilisant des exemples tirées du modèle Isba (Interactions solbiosphère-atmosphère) développé à Météo-France et du système d'assimilation de surface du Service météorologique du Canada. The representation of physical processes over land, including heat, humidity, and momentum exchanges with the atmosphere, as well as accurate initialisation of its main prognostic variables, has a substantial influence on numerical prediction of the near-surface atmosphere and on the formation of clouds and precipitation. How are continental surfaces represented in numerical weather prediction (NWP) models? What are the scientific issues specif ic to NWP for this representation? These are questions examined in this study using examples from the Isba (Interactions Soil-Biosphere-Atmosphere) land surface scheme developed at Météo-France and the land data assimilation system from the Meteorological Service of Canada.


2020 ◽  
Author(s):  
Anthony Mucia ◽  
Clément Albergel ◽  
Bertrand Bonan ◽  
Yongjun Zheng ◽  
Jean-Christophe Calvet

<p>LDAS-Monde is a global Land Data Assimilation System developed in the research department of Météo-France (CNRM) to monitor Land Surface Variables (LSVs) at various scales, from regional to global. With LDAS-Monde, it is possible to assimilate satellite derived observations of Surface Soil Moisture (SSM) and Leaf Area Index (LAI) e.g. from the Copernicus Global Land Service (CGLS). It is an offline system normally driven by atmospheric reanalyses such as ECMWF ERA5.</p><p>In this study we investigate LDAS-Monde ability to use atmospheric forecasts to predict LSV states up to weeks in advance. In addition to the accuracy of the forecast predictions, the impact of the initialization on the LSVs forecast is addressed. To perform this study, LDAS-Monde is forced by a fifteen-day forecast from ECMWF for the 2017-2018 period over the Contiguous United States (CONUS) at 0.2<sup>o</sup> x 0.2<sup>o</sup> spatial resolution. These LSVs forecasts are initialized either by the model alone (LDAS-Monde open-loop, no assimilation, Fc_ol) or by the analysis (assimilation of SSM and LAI, Fc_an). These two sets of forecast are then assessed using satellite derived observations of SSM and LAI, evapotranspiration estimates, as well as in situ measurements of soil moisture from the U.S. Climate Reference Network (USCRN). Results indicate that for the three evaluation variables (SSM, LAI, and evapotranspiration), LDAS-Monde provides reasonably accurate predictions two weeks in advance. Additionally, the initial conditions are shown to make a positive impact with respect to LAI, evapotranspiration, and deeper layers of soil moisture when using Fc_an. Moreover, this impact persists in time, particularly for vegetation related variables. Other model variables (such as runoff and drainage) are also affected by the initial conditions. Future work will focus on the transfer of this predictive information from a research to stakeholder tool.</p>


Sign in / Sign up

Export Citation Format

Share Document