scholarly journals Boundary Conditions for Limited-Area Ensemble Kalman Filters

2006 ◽  
Vol 134 (9) ◽  
pp. 2490-2502 ◽  
Author(s):  
Ryan D. Torn ◽  
Gregory J. Hakim ◽  
Chris Snyder

Abstract One aspect of implementing a limited-area ensemble Kalman filter (EnKF) involves the specification of a suitable ensemble of lateral boundary conditions. Two classes of methods to populate a boundary condition ensemble are proposed. In the first class, the ensemble of boundary conditions is provided by an EnKF on a larger domain and is approximately a random draw from the probability distribution function for the forecast (or analysis) on the limited-area domain boundary. The second class perturbs around a deterministic estimate of the state using assumed spatial and temporal covariance relationships. Methods in the second class are relatively flexible and easy to implement. Experiments that test the utility of these methods are performed for both an idealized low-dimensional model and limited-area simulations using the Weather Research and Forecasting (WRF) model; all experiments employ simulated observations under the perfect model assumption. The performance of the ensemble boundary condition methods is assessed by comparing the results of each experiment against a control “global” EnKF that extends beyond the limited-area domain. For all methods tested, results show that errors for the limited-area EnKF are larger near the lateral boundaries than those from a control EnKF, but decay inside the limited-area domain so that errors there are comparable to the control case. The relatively larger errors near the boundaries in the limited-area EnKF originate from not assimilating observations outside the limited-area domain and, in the second class of methods, from deficiencies in boundary spatial and temporal covariances. Overall, these experiments suggest that for observation densities typical in numerical weather prediction models, ensemble boundary conditions can be specified in the absence of a global ensemble without significant penalty in the domain interior by perturbing around an ensemble mean.

2011 ◽  
Vol 139 (7) ◽  
pp. 2025-2045 ◽  
Author(s):  
Zhiyong Meng ◽  
Fuqing Zhang

Abstract Ensemble-based data assimilation is a state estimation technique that uses short-term ensemble forecasts to estimate flow-dependent background error covariance and is best known by varying forms of ensemble Kalman filters (EnKFs). The EnKF has recently emerged as one of the primary alternatives to the variational data assimilation methods widely used in both global and limited-area numerical weather prediction models. In addition to comparing the EnKF with variational methods, this article reviews recent advances and challenges in the development and applications of the EnKF, including its hybrid with variational methods, in limited-area models that resolve weather systems from convective to meso- and regional scales.


2007 ◽  
Vol 135 (4) ◽  
pp. 1424-1438 ◽  
Author(s):  
Andrew R. Lawrence ◽  
James A. Hansen

Abstract An ensemble-based data assimilation approach is used to transform old ensemble forecast perturbations with more recent observations for the purpose of inexpensively increasing ensemble size. The impact of the transformations are propagated forward in time over the ensemble’s forecast period without rerunning any models, and these transformed ensemble forecast perturbations can be combined with the most recent ensemble forecast to sensibly increase forecast ensemble sizes. Because the transform takes place in perturbation space, the transformed perturbations must be centered on the ensemble mean from the most recent forecasts. Thus, the benefit of the approach is in terms of improved ensemble statistics rather than improvements in the mean. Larger ensemble forecasts can be used for numerous purposes, including probabilistic forecasting, targeted observations, and to provide boundary conditions to limited-area models. This transformed lagged ensemble forecasting approach is explored and is shown to give positive results in the context of a simple chaotic model. By incorporating a suitable perturbation inflation factor, the technique was found to generate forecast ensembles whose skill were statistically comparable to those produced by adding nonlinear model integrations. Implications for ensemble forecasts generated by numerical weather prediction models are briefly discussed, including multimodel ensemble forecasting.


2021 ◽  
Author(s):  
Pedro Bolgiani ◽  
Javier Díaz-Fernández ◽  
Lara Quitián-Hernández ◽  
Mariano Sastre ◽  
Daniel Santos-Muñoz ◽  
...  

<p>As the computational capacity has been largely improved in the last decades, the grid configuration of numerical weather prediction models has stepped into microscale resolutions. Even if mesoscale models are not originally designed to reproduce fine scale phenomena, a large effort is being made by the research community to improve and adapt these systems. However, reasonable doubts exist regarding the ability of the models to forecast this type of events, due to the unfit parametrizations and the appearance of instabilities and lack of sensitivity in the variables. Here, the Weather Research and Forecasting (WRF) model effective resolution is evaluated for several situations and grid resolutions. This is achieved by assessing the curve of dissipation for the wind kinetic energy. Results show that the simulated energy spectrum responds to different synoptic conditions. Nevertheless, when the model is forced into microscale grid resolutions the dissipation curves present an unrealistic atmospheric energy. This may be a partial explanation to the aforementioned issues and imposes a large uncertainty to forecasting at these resolutions.</p>


2021 ◽  
Author(s):  
Paolo Mori ◽  
Thomas Schwitalla ◽  
Markos Ware ◽  
Kirsten Warrach-Sagi ◽  
Volker Wulfmeyer

<p>Studies have shown the benefits of convection-permitting downscaling at the seasonal scale using limited-area models. To evaluate the performance with real forecasts as boundary conditions, four members of the SEAS5 global ensemble were dynamically downscaled over Ethiopia during June, July, and August 2018 at a 3-km resolution. We used a multi‐physics ensemble based on the WRF model to compare the effects of boundary conditions and physics <span><span>parametrization</span></span> producing 16 ensemble members. With ECMWF analyses as a reference, SEAS5 averaged to a +0.17°C bias over Ethiopia whereas WRF resulted in +1.14°C. With respect to precipitation, the WRF model simulated 264 mm compared to 248 mm for SEAS5 and 236 mm for GPM-IMERG. The maximum northward extension of the tropical rain belt decreased by about 2° in both models. Downscaling enhanced the ensemble spread in precipitation by 60% on average, correcting the SEAS5 underdispersion. The WRF ensemble spread over Ethiopia was mostly generated by the perturbed boundary conditions, as their effect is often 50% larger than the physics‐induced variability. The results indicate that boundary condition perturbations are necessary, although not always sufficient, to generate the right amount of ensemble spread in a limited-area model with complex topography. The next step is to use specific methods to calculate the added value provided by the downscaling.</p>


2012 ◽  
Vol 5 (1) ◽  
pp. 87-110 ◽  
Author(s):  
A. Kerkweg ◽  
P. Jöckel

Abstract. The numerical weather prediction model of the Consortium for Small Scale Modelling (COSMO), maintained by the German weather service (DWD), is connected with the Modular Earth Submodel System (MESSy). This effort is undertaken in preparation of a new, limited-area atmospheric chemistry model. Limited-area models require lateral boundary conditions for all prognostic variables. Therefore the quality of a regional chemistry model is expected to improve, if boundary conditions for the chemical constituents are provided by the driving model in consistence with the meteorological boundary conditions. The new developed model is as consistent as possible, with respect to atmospheric chemistry and related processes, with a previously developed global atmospheric chemistry general circulation model: the ECHAM/MESSy Atmospheric Chemistry (EMAC) model. The combined system constitutes a new research tool, bridging the global to the meso-γ scale for atmospheric chemistry research. MESSy provides the infrastructure and includes, among others, the process and diagnostic submodels for atmospheric chemistry simulations. Furthermore, MESSy is highly flexible allowing model setups with tailor made complexity, depending on the scientific question. Here, the connection of the MESSy infrastructure to the COSMO model is documented and also the code changes required for the generalisation of regular MESSy submodels. Moreover, previously published prototype submodels for simplified tracer studies are generalised to be plugged-in and used in the global and the limited-area model. They are used to evaluate the TRACER interface implementation in the new COSMO/MESSy model system and the tracer transport characteristics, an important prerequisite for future atmospheric chemistry applications. A supplementary document with further details on the technical implementation of the MESSy interface into COSMO with a complete list of modifications to the COSMO code is provided.


2007 ◽  
Vol 7 (21) ◽  
pp. 5659-5674 ◽  
Author(s):  
V. Venema ◽  
A. Schomburg ◽  
F. Ament ◽  
C. Simmer

Abstract. Radiative transfer calculations in atmospheric models are computationally expensive, even if based on simplifications such as the δ-two-stream approximation. In most weather prediction models these parameterisation schemes are therefore called infrequently, accepting additional model error due to the persistence assumption between calls. This paper presents two so-called adaptive parameterisation schemes for radiative transfer in a limited area model: A perturbation scheme that exploits temporal correlations and a local-search scheme that mainly takes advantage of spatial correlations. Utilising these correlations and with similar computational resources, the schemes are able to predict the surface net radiative fluxes more accurately than a scheme based on the persistence assumption. An important property of these adaptive schemes is that their accuracy does not decrease much in case of strong reductions in the number of calls to the δ-two-stream scheme. It is hypothesised that the core idea can also be employed in parameterisation schemes for other processes and in other dynamical models.


2020 ◽  
Author(s):  
Emilie C. Iversen ◽  
Gregory Thompson ◽  
Bjørn Egil Nygaard

<p>Snow falling into a melting layer will eventually consist of a fraction of meltwater and hence change its characteristics in terms of size, shape, density, fall speed and stickiness. Given that these characteristics contribute to determine the phase and amount of precipitation reaching the ground, precisely predicting such are important in order to obtain accurate weather forecasts for which society depends on. For example, in hydrological modelling precipitation phase at the surface is a first-order driver of hydrological processes in a water shed. Also, melting snow exerts a possible threat to critical infrastructure because the wet, sticky snow may adhere to the structures and form heavy ice sleeves.</p><p>Most widely used bulk microphysical parameterization schemes part of numerical weather prediction models represent only purely solid or liquid hydrometeors, and so melting particle characteristics are either ignored or represented by parent species with simple conditions for behavior in the melting layer. The Thompson microphysics scheme is explicitly developed for forecasting winter conditions in real-time as part of the WRF model, and to maintain computational performance, the introduction of additional prognostic variables is undesirable. This research aims at improving the Thompson scheme with respect to melting snow characteristics using a physically based approximation for the snowflake melted fraction, as well as a new definition of melting level and melting particle fall velocity. A real 3D WRF case is set up to compare with in-situ measurements of hydrometeor size and fall velocity from a disdrometer and a vertically pointing Doppler radar deployed during the Olympic Mountain Experiment (OLYMPEX). The modified microphysics scheme is able to replicate the bimodal distribution of fall speed – diameter relations typical of mixed precipitation seen in disdrometer data, as well as the non-linear increase in snow fall speed with melted fraction through the melting layer.</p>


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Swagata Payra ◽  
Manju Mohan

The prediction of fog onset remains difficult despite the progress in numerical weather prediction. It is a complex process and requires adequate representation of the local perturbations in weather prediction models. It mainly depends upon microphysical and mesoscale processes that act within the boundary layer. This study utilizes a multirule based diagnostic (MRD) approach using postprocessing of the model simulations for fog predictions. The empiricism involved in this approach is mainly to bridge the gap between mesoscale and microscale variables, which are related to mechanism of the fog formation. Fog occurrence is a common phenomenon during winter season over Delhi, India, with the passage of the western disturbances across northwestern part of the country accompanied with significant amount of moisture. This study implements the above cited approach for the prediction of occurrences of fog and its onset time over Delhi. For this purpose, a high resolution weather research and forecasting (WRF) model is used for fog simulations. The study involves depiction of model validation and postprocessing of the model simulations for MRD approach and its subsequent application to fog predictions. Through this approach model identified foggy and nonfoggy days successfully 94% of the time. Further, the onset of fog events is well captured within an accuracy of 30–90 minutes. This study demonstrates that the multirule based postprocessing approach is a useful and highly promising tool in improving the fog predictions.


2009 ◽  
Vol 48 (6) ◽  
pp. 1199-1216 ◽  
Author(s):  
Otto Hyvärinen ◽  
Kalle Eerola ◽  
Niilo Siljamo ◽  
Jarkko Koskinen

Abstract Snow cover has a strong effect on the surface and lower atmosphere in NWP models. Because the progress of in situ observations has stalled, satellite-based snow analyses are becoming increasingly important. Currently, there exist several products that operationally map global or continental snow cover. In this study, satellite-based snow cover analyses from NOAA, NASA, and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and NWP snow analyses from the High-Resolution Limited-Area Model (HIRLAM) and ECMWF, were compared using data from January to June 2006. Because no analyses were independent and since available in situ measurements were already used in the NWP analyses, no independent ground truth was available and only the consistency between analyses could be compared. Snow analyses from NOAA, NASA, and ECMWF were similar, but the analysis from NASA was greatly hampered by clouds. HIRLAM and EUMETSAT deviated most from other analyses. Even though the analysis schemes of HIRLAM and ECMWF were quite similar, the resulting snow analyses were quite dissimilar, because ECMWF used the satellite information of snow cover in the form of NOAA analyses, while HIRLAM used none. The differences are especially prominent in areas around the snow edge where few in situ observations are available. This suggests that NWP snow analyses based only on in situ measurements would greatly benefit from inclusion of satellite-based snow cover information.


1999 ◽  
Vol 09 (05) ◽  
pp. 831-842 ◽  
Author(s):  
F. CHOMÉ ◽  
C. NICOLIS

Different strategies for building high-resolution models providing a more detailed description of a limited area of interest as for example, in regional weather forecasts are developed. They are subsequently compared, on the basis of the dynamical behavior generated by the corresponding models. The statistical properties of the relevant fields are analyzed, and predictability experiments are performed on statistical ensembles of close lying trajectories whose mean distance represents the uncertainty in the initial state of the system. The results show that a global, variable-mesh model performs much better than a limited area fine mesh one embedded into a coarser global model.


Sign in / Sign up

Export Citation Format

Share Document