Effects of titanate coupling agent on the mechanical, thermal, and morphological properties of poly(methyl methacrylate)/hydroxyapatite denture base composites

2011 ◽  
Vol 45 (22) ◽  
pp. 2335-2345 ◽  
Author(s):  
W.L. Tham ◽  
W.S. Chow ◽  
Z.A. Mohd Ishak
2021 ◽  
pp. 37-45
Author(s):  
Jamal Moammar ALDABIB

In removable prosthodontics, poly(methyl methacrylate) (PMMA) is the most suitable for the construction of denture bases. Intra-orally, the subjected stress intensity during the function accelerate the fracture of acrylic resin denture bases. Extra-orally, fracture occurs when dentures are accidentally dropped on a hard surface. The aim of the current study was to investigate the effect of coupling agent concentration on the mechanical properties of Hydroxyapatite/Poly(methyl methacrylate) (HA/PMMA) denture base composite. The Hydroxyapatite (HA) treated with four different ratios (i.e. 0, 5, 7 and 10 wt%) of 3-(trimethoxysily) propyl methacrylate (γMPS) silane coupling agent was added into the PMMA matrix. The mechanical performance of the composite was evaluated by conducting fracture toughness, flexural and tensile tests. An improvement of 13.83% and 9.62% in the tensile and flexural strength respectively, was achieved. The tensile and flexural modulus of the composite increased by 19.04% and 12.5% respectively. A significant improvement of 29.26% in the fracture toughness was observed at 10 wt% of γ-MPS. 10 wt% of γ-MPS is the optimum amount of coupling agent for obtaining balanced mechanical properties.


2021 ◽  
Vol 36 (2) ◽  
pp. 93-110
Author(s):  
Princy Philip ◽  
Tomlal Jose ◽  
Sarath KS ◽  
Sunny Kuriakose

Silver nanoparticles with 5–10 nm diameters are synthesised using Couroupita guianensis flower extract. The synthesised silver nanoparticles found to show good antimicrobial activity against gram negative and gram positive bacteria. Poly(methyl methacrylate) nanofibers with pristine, surface roughened and coaxial hollow forms are prepared by electrospinning. The structural and morphological properties of these pure and structurally modified poly(methyl methacrylate) nanofibers are evidenced by various analytical techniques. The antimicrobial studies of poly(methyl methacrylate) nanofibers having different architectures incorporated with silver nanoparticles are carried out. It is found that, all the three forms of poly(methyl methacrylate) nanofibers incorporated with silver nanoparticles show antibacterial properties against both gram positive and gram negative bacteria. Among these, surface roughened poly(methyl methacrylate) nanofibers incorporated with silver nanoparticles show highest antibacterial activity than the other two structural forms. The present study offers an alternative to the existing optical lenses. People especially those who suffer from eye problems can protect their eyes in a better way from infectious agents by wearing optical lens made from C. guianensis stabilised silver nanoparticles incorporated poly(methyl methacrylate) nanofibers than that made from pure poly(methyl methacrylate) nanofibers or films.


2015 ◽  
Vol 44 (4) ◽  
pp. 189-194 ◽  
Author(s):  
Fernanda Alves Feitosa ◽  
Mateus Guimarães Lage Reggiani ◽  
Rodrigo Máximo de Araújo

<title>Abstract</title><sec><title>Purpose</title><p>To evaluate microhardness and roughness of denture base polymethylmethacrylate resinn exposed to acid beverages and mouthwashes.</p></sec><sec><title>Material and method</title><p>Rectangular samples (n=80) were prepared from poly (methyl methacrylate) (PMMA). They were divided into 8 groups and had the initial microhardness and Knoop roughness measured. Samples of each group were immersed for 10 min into a test solution (coffee, lemon juice, chlorhexidine gluconate, red wine, cola-based soft drink, vinegar or antiseptic with and without alcohol) and after stored in artificial saliva for 23 h and 50 min, completing a period of 24 h. This procedure was performed for 14 consecutive days and after this period the microhardness and surface roughness measurements were made again. Data were statistically analyzed using ANOVA non parametric, Kruskal-Walis and the Dunn´s test for microhardness and the t-Student and ANOVA for roughness.</p></sec><sec><title>Result</title><p>For microhardness there were found statistically significant differences among the chlorhexidine gluconate solution, antiseptic without alcohol and cola-based soft drink. For roughness was observed that the mean values between the initial period and after immersion in the test products differed statistically in all groups, without difference among groups.</p></sec><sec><title>Conclusion</title><p>The microhardness of poly(methyl methacrylate) was affected by continue exposition to chlorhexidine gluconate, antiseptic without alcohol and cola-based soft drink. The roughness of poly(methyl methacrylate) is negatively influenced by the exposure to all tested products. It may be concluded that both, microhardness and roughness, were affected by the treatments.</p></sec>


Author(s):  
Montri Ratanajanchai ◽  
Widchaya Kanchanavasita ◽  
Kallaya Suputtamongkol ◽  
Amonrat Wonglamsam ◽  
Sirinporn Thamapipol ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4146 ◽  
Author(s):  
Grzegorz Chladek ◽  
Katarzyna Pakieła ◽  
Wojciech Pakieła ◽  
Jarosław Żmudzki ◽  
Marcin Adamiak ◽  
...  

Colonization of polymeric dental prosthetic materials by yeast-like fungi and the association of these microorganisms with complications occurring during prosthetic treatment are important clinical problems. In previously presented research, submicron inorganic particles of silver sodium hydrogen zirconium phosphate (S–P) were introduced into poly(methyl methacrylate) (PMMA) denture base material which allowed for obtaining the antimicrobial effect during a 90 day experiment. The aim of the present study was to investigate the flexural strength, impact strength, hardness, wear resistance, sorption, and solubility during three months of storage in distilled water. With increasing S–P concentration after 2 days of conditioning in distilled water, reduced values of flexural strength (107–72 MPa), impact strength (18.4–5.5 MPa) as well as enhanced solubility (0.95–1.49 µg/mm3) were registered, but they were at acceptable levels, and the sorption was stable. Favorable changes included increased hardness (198–238 MPa), flexural modulus (2.9–3.3 GPa), and decreased volume loss during wear test (2.9–0.2 mm3). The percentage changes of the analyzed properties during the 90 days of storage in distilled water were similar for all materials.


Sign in / Sign up

Export Citation Format

Share Document