MiRNA-149 as a Candidate for Facial Clefting and Neural Crest Cell Migration

2021 ◽  
pp. 002203452110382
Author(s):  
L.G. Stüssel ◽  
R. Hollstein ◽  
M. Laugsch ◽  
L.M. Hochfeld ◽  
J. Welzenbach ◽  
...  

Nonsyndromic cleft lip with or without palate (nsCL/P) ranks among the most common human birth defects and has a multifactorial etiology. Human neural crest cells (hNCC) make a substantial contribution to the formation of facial bone and cartilage and are a key cell type in terms of nsCL/P etiology. Based on increasing evidence for the role of noncoding regulatory mechanisms in nsCL/P, we investigated the role of hNCC-expressed microRNAs (miRNA) in cleft development. First, we conducted a systematic analysis of miRNAs expressed in human-induced pluripotent stem cell–derived hNCC using Affymetrix microarrays on cell lines established from 4 unaffected donors. These analyses identified 152 candidate miRNAs. Based on the hypothesis that candidate miRNA loci harbor genetic variation associated with nsCL/P risk, the genomic locations of these candidates were cross-referenced with data from a previous genome-wide association study of nsCL/P. Associated variants were reanalyzed in independent nsCL/P study populations. Jointly, the results suggest that miR-149 is implicated in nsCL/P etiology. Second, functional follow-up included in vitro overexpression and inhibition of miR-149 in hNCC and subsequent analyses at the molecular and phenotypic level. Using 3′RNA-Seq, we identified 604 differentially expressed (DE) genes in hNCC overexpressing miR-149 compared with untreated cells. These included TLR4 and JUNB, which are established targets of miR-149, and NOG, BMP4, and PAX6, which are reported nsCL/P candidate genes. Pathway analyses revealed that DE genes were enriched in pathways including regulation of cartilage development and NCC differentiation. At the cellular level, distinct hNCC migration patterns were observed in response to miR-149 overexpression. Our data suggest that miR-149 is involved in the etiology of nsCL/P via its role in hNCC migration.

1981 ◽  
Vol 82 (1) ◽  
pp. 86-94 ◽  
Author(s):  
Jeanne Loring ◽  
Bengt Glimelius ◽  
Carol Erickson ◽  
James A. Weston

2013 ◽  
Vol 203 (4) ◽  
pp. 673-689 ◽  
Author(s):  
Ah-Lai Law ◽  
Anne Vehlow ◽  
Maria Kotini ◽  
Lauren Dodgson ◽  
Daniel Soong ◽  
...  

Cell migration is essential for development, but its deregulation causes metastasis. The Scar/WAVE complex is absolutely required for lamellipodia and is a key effector in cell migration, but its regulation in vivo is enigmatic. Lamellipodin (Lpd) controls lamellipodium formation through an unknown mechanism. Here, we report that Lpd directly binds active Rac, which regulates a direct interaction between Lpd and the Scar/WAVE complex via Abi. Consequently, Lpd controls lamellipodium size, cell migration speed, and persistence via Scar/WAVE in vitro. Moreover, Lpd knockout mice display defective pigmentation because fewer migrating neural crest-derived melanoblasts reach their target during development. Consistently, Lpd regulates mesenchymal neural crest cell migration cell autonomously in Xenopus laevis via the Scar/WAVE complex. Further, Lpd’s Drosophila melanogaster orthologue Pico binds Scar, and both regulate collective epithelial border cell migration. Pico also controls directed cell protrusions of border cell clusters in a Scar-dependent manner. Taken together, Lpd is an essential, evolutionary conserved regulator of the Scar/WAVE complex during cell migration in vivo.


Zygote ◽  
2018 ◽  
Vol 26 (6) ◽  
pp. 457-464 ◽  
Author(s):  
Xiao-tan Zhang ◽  
Guang Wang ◽  
Yan Li ◽  
Manli Chuai ◽  
Kenneth Ka Ho Lee ◽  
...  

SummaryFibroblast growth factor (FGF) signalling acts as one of modulators that control neural crest cell (NCC) migration, but how this is achieved is still unclear. In this study, we investigated the effects of FGF signalling on NCC migration by blocking this process. Constructs that were capable of inducing Sprouty2 (Spry2) or dominant-negative FGFR1 (Dn-FGFR1) expression were transfected into the cells making up the neural tubes. Our results revealed that blocking FGF signalling at stage HH10 (neurulation stage) could enhance NCC migration at both the cranial and trunk levels in the developing embryos. It was established that FGF-mediated NCC migration was not due to altering the expression of N-cadherin in the neural tube. Instead, we determined that cyclin D1 was overexpressed in the cranial and trunk levels when Sprouty2 was upregulated in the dorsal neural tube. These results imply that the cell cycle was a target of FGF signalling through which it regulates NCC migration at the neurulation stage.


2021 ◽  
Author(s):  
QiaoYao Huang ◽  
YanRu Niu ◽  
LiJun Song ◽  
JinZhi Huang ◽  
Chenxi Wang ◽  
...  

Abstract Background: LIN28B plays an important role in early embryonic development, but its role in villous trophoblast implantation and differentiation remains unknown. To verify the role of LIN28B in trophoblastic villous tissue and cells from women with URSA(unexplained recurrent spontaneous abortion)and artificial termination of pregnancy (negative control, NC). Methods:The Lin28b gene and its protein expression level were detected with real-time quantitative PCR, Western immunoblotting analysis, and immunocytochemistry. The gene was also overexpressed in chorionic villous cell lines (HTR-8/SVneo and BeWo) to examine its effect on trophoblast function.Results: The expression of LIN28B mRNA and protein of URSA villi was lower than that in the NC group. At the cellular level, overexpression of LIN28B enhanced cellular migration, and invasion, and inhibited apoptosis. LIN28B may inhibit apoptosis by promoting Akt phosphorylation and by inhibiting Bad phosphorylation and Bcl-2 expression. In addition, LIN28B inhibited cell fusion and reduced cellular syncytia. Conclusions: LIN28B can inhibit cell proliferation, invasion and migration in vitro, and promote apoptosis and fusion. The low expression of LIN28B in URSA villous trophoblast cells may be one of the causes of abortion. The role of LIN28B in villous trophoblasts needs further study.


Author(s):  
QiaoYao Huang ◽  
YanRu Niu ◽  
LiJun Song ◽  
JinZhi Huang ◽  
Chenxi Wang ◽  
...  

Background: LIN28B plays an important role in early embryonic development, but its role in villous trophoblast implantation and differentiation remains unknown. To verify the role of LIN28B in trophoblastic villous tissue and cells from women with URSA(unexplained recurrent spontaneous abortion)and artificial termination of pregnancy (negative control, NC). Methods:The Lin28b gene and its protein expression level were detected with real-time quantitative PCR, Western immunoblotting analysis, and immunocytochemistry. The gene was also overexpressed in chorionic villous cell lines (HTR-8/SVneo and BeWo) to examine its effect on trophoblast function. Results: The expression of LIN28B mRNA and protein of URSA villi was lower than that in the NC group. At the cellular level, overexpression of LIN28B enhanced cellular migration, and invasion, and inhibited apoptosis. LIN28B may inhibit apoptosis by promoting Akt phosphorylation and by inhibiting Bad phosphorylation and Bcl-2 expression. In addition, LIN28B inhibited cell fusion and reduced cellular syncytia. Conclusions: LIN28B can inhibit cell invasion and migration in vitro, and promote apoptosis and fusion. The low expression of LIN28B in URSA villous trophoblast cells may be one of the causes of abortion. The role of LIN28B in villous trophoblasts needs further study.


Development ◽  
1995 ◽  
Vol 121 (2) ◽  
pp. 525-538 ◽  
Author(s):  
M.A. Selleck ◽  
M. Bronner-Fraser

We have investigated the lineage and tissue interactions that result in avian neural crest cell formation from the ectoderm. Presumptive neural plate was grafted adjacent to non-neural ectoderm in whole embryo culture to examine the role of tissue interactions in ontogeny of the neural crest. Our results show that juxtaposition of non-neural ectoderm and presumptive neural plate induces the formation of neural crest cells. Quail/chick recombinations demonstrate that both the prospective neural plate and the prospective epidermis can contribute to the neural crest. When similar neural plate/epidermal confrontations are performed in tissue culture to look at the formation of neural crest derivatives, juxtaposition of epidermis with either early (stages 4–5) or later (stages 6–10) neural plate results in the generation of both melanocytes and sympathoadrenal cells. Interestingly, neural plates isolated from early stages form no neural crest cells, whereas those isolated later give rise to melanocytes but not crest-derived sympathoadrenal cells. Single cell lineage analysis was performed to determine the time at which the neural crest lineage diverges from the epidermal lineage and to elucidate the timing of neural plate/epidermis interactions during normal development. Our results from stage 8 to 10+ embryos show that the neural plate/neural crest lineage segregates from the epidermis around the time of neural tube closure, suggesting that neural induction is still underway at open neural plate stages.


2002 ◽  
Vol 159 (5) ◽  
pp. 867-880 ◽  
Author(s):  
Lisette Hari ◽  
Véronique Brault ◽  
Maurice Kléber ◽  
Hye-Youn Lee ◽  
Fabian Ille ◽  
...  

β-Catenin plays a pivotal role in cadherin-mediated cell adhesion. Moreover, it is a downstream signaling component of Wnt that controls multiple developmental processes such as cell proliferation, apoptosis, and fate decisions. To study the role of β-catenin in neural crest development, we used the Cre/loxP system to ablate β-catenin specifically in neural crest stem cells. Although several neural crest–derived structures develop normally, mutant animals lack melanocytes and dorsal root ganglia (DRG). In vivo and in vitro analyses revealed that mutant neural crest cells emigrate but fail to generate an early wave of sensory neurogenesis that is normally marked by the transcription factor neurogenin (ngn) 2. This indicates a role of β-catenin in premigratory or early migratory neural crest and points to heterogeneity of neural crest cells at the earliest stages of crest development. In addition, migratory neural crest cells lateral to the neural tube do not aggregate to form DRG and are unable to produce a later wave of sensory neurogenesis usually marked by the transcription factor ngn1. We propose that the requirement of β-catenin for the specification of melanocytes and sensory neuronal lineages reflects roles of β-catenin both in Wnt signaling and in mediating cell–cell interactions.


Sign in / Sign up

Export Citation Format

Share Document