scholarly journals Modulation of sugar feeding behavior by Gymnema sylvestre in Drosophila melanogaster

2022 ◽  
Vol 105 (1) ◽  
pp. 003685042110676
Author(s):  
Shivam Kaushik ◽  
Rahul Kumar ◽  
Sachin Kumar ◽  
Srishti Sanghi ◽  
Pinky Kain

Introduction: Sugar is the main source of energy for nearly all animals. However, consumption of a high amount of sugars can lead to many metabolic disorders hence, balancing calorie intake in the form of sugar is required. Various herbs are in use to control body weight, cure diabetes and control elevated blood sugar levels. One such herb is Gymnema sylvestre commonly called Gurmar (destroyer of sugar). Gurmar selectively inhibits sugar sensation by mechanisms that are still elusive. Objectives: The primary objective of this study is to understand the effect of gurmar on sweet taste feeding behaviour in insects using the invertebrate model system Drosophila melanogaster. Methods: For this study, we used feeding assays, spectrophotometry and Proboscis Extension Reflex (PER) assay to determine how flies detect gurmar. Additionally, life span analysis, egg-laying behaviour and developmental profiles were used to probe the role of gurmar on the overall health of the flies. During the whole study, we used only the raw powdered form of gurmar (dried leaves) to examine its effect on sweet taste feeding behaviour. Results: Our data demonstrate that whole gurmar in a raw powdered form is aversive to flies and inhibits sugar evoked PER and feeding responses. Also, we observed it takes at least 24 h of starvation time to reduce the consumption of sugar in flies pre-fed on gurmar. Flies lay a fewer number of eggs on gurmar media and show developmental defects. Our data suggest that flies detect gurmar using both taste and olfactory cues. Conclusion: Understanding how gurmar reshapes taste curves to promote reduced consumption of sugars in flies will open up avenues to help people with health issues related to high sugar consumption, but our data also highlights that its consumption should be carefully considered since gurmar is aversive to flies and has detrimental effects on development.

Author(s):  
Cristina Pignocchi ◽  
Alexander Ivakov ◽  
Regina Feil ◽  
Martin Trick ◽  
Marilyn Pike ◽  
...  

Abstract Plant roots depend on sucrose imported from leaves as the substrate for metabolism and growth. Sucrose and hexoses derived from it are also signalling molecules that modulate growth and development, but the importance for signalling of endogenous changes in sugar levels is poorly understood. We report that reduced activity of cytosolic invertase, which converts sucrose to hexoses, leads to pronounced metabolic, growth and developmental defects in roots of Arabidopsis (Arabidopsis thaliana) seedlings. In addition to altered sugar and downstream metabolite levels, roots of cinv1 cinv2 mutants have reduced elongation rates, cell and meristem size, abnormal meristematic cell division patterns, and altered expression of thousands of genes of diverse functions. Provision of exogenous glucose to mutant roots repairs relatively few of the defects. The extensive transcriptional differences between mutant and wild-type roots have hallmarks of both high sucrose and low hexose signalling. We conclude that the mutant phenotype reflects both low carbon availability for metabolism and growth and complex sugar signals derived from elevated sucrose and depressed hexose levels in the cytosol of mutant roots. Such reciprocal changes in endogenous sucrose and hexose levels potentially provide rich information about sugar status that translates into flexible adjustments of growth and development.


1989 ◽  
Vol 78 (2) ◽  
pp. 243-248 ◽  
Author(s):  
E. Santiago ◽  
A. Dom�nguez ◽  
J. Albornoz ◽  
R. Pi�eiro ◽  
J. I. Izquierdo

2021 ◽  
Author(s):  
Bailly Tiphaine ◽  
Philip Kohlmeier ◽  
Rampal Etienne ◽  
Bregje Wertheim ◽  
Jean-Christophe Billeter

Being part of a group facilitates cooperation between group members, but also creates competition for limited resources. This conundrum is problematic for gravid females who benefit from being in a group, but whose future offspring may struggle for access to nutrition in larger groups. Females should thus modulate their reproductive output depending on their social context. Although social-context dependent modulation of reproduction is documented in a broad range of species, its underlying mechanisms and functions are poorly understood. In the fruit fly Drosophila melanogaster, females actively attract conspecifics to lay eggs on the same resources, generating groups in which individuals may cooperate or compete. The tractability of the genetics of this species allows dissecting the mechanisms underlying physiological adaptation to their social context. Here, we show that females produce eggs increasingly faster as group size increases. By laying eggs faster in group than alone, females appear to reduce competition between offspring and increase their likelihood of survival. In addition, females in a group lay their eggs during the light phase of the day, while isolated females lay them during the night. We show that responses to the presence of others are determined by vision through the motion detection pathway and that flies from any sex, mating status or species can trigger these responses. The mechanisms of this modulation of egg-laying by group is connected to a lifting of the inhibition of light on oogenesis and egg-laying by stimulating hormonal pathways involving juvenile hormone. Because modulation of reproduction by social context is a hallmark of animals with higher levels of sociality, our findings represent a protosocial mechanism in a species considered solitary that may have been the target of selection for the evolution of more complex social systems.


2020 ◽  
Author(s):  
Yongzhuo Chen ◽  
Min Zhang ◽  
Wei Hu ◽  
Jing Li ◽  
Pengcheng Liu ◽  
...  

Abstract Background Drosophila suzukii is widely distributed. Research has revealed that the presence of Drosophila melanogaster can reduce the emergence and egg laying of D. suzukii. However, the reasons for these phenomena have not yet been reported. To investigate this issue, we sought to answer three questions: Can the presence of D. melanogaster reduce the longevity of D. suzukii? Does D. melanogaster dominate in larval interspecific competition with D. suzukii? Does reproductive interference occur between these species; i.e., do individuals of one species (e.g., D. suzukii) engage in reproductive activities with individuals of the other (e.g., D. melanogaster) such that the fitness of one or both species is reduced? Results The results showed that the adult offspring number of Drosophila suzukii was significantly reduced when this species was reared with Drosophila melanogaster. The larval interspecific competition had no significant effects on Drosophila suzukii longevity or population size. Surprisingly, Drosophila melanogaster imposed reproductive interference on males of Drosophila suzukii, which led to a significant decline in the rate of successful mating of the latter species. Conclusions The presence of Drosophila melanogaster causes the population size of Drosophila suzukii to decrease through reproductive interference, and the rate of successful mating in Drosophila suzukii is significantly reduced in the presence of Drosophila melanogaster.


Insects ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 697
Author(s):  
Marie-Paule Nawrot-Esposito ◽  
Aurélie Babin ◽  
Matthieu Pasco ◽  
Marylène Poirié ◽  
Jean-Luc Gatti ◽  
...  

Bioinsecticides made from the bacterium Bacillus thuringiensis (Bt) are the bestselling bioinsecticide worldwide. Among Bt bioinsecticides, those based on the strain Bt subsp. kurstaki (Btk) are widely used in farming to specifically control pest lepidopteran larvae. Although there is much evidence of the lack of acute lethality of Btk products for non-target animals, only scarce data are available on their potential non-lethal developmental adverse effects. Using a concentration that could be reached in the field upon sprayings, we show that Btk products impair growth and developmental time of the non-target dipteran Drosophila melanogaster. We demonstrate that these effects are mediated by the synergy between Btk bacteria and Btk insecticidal toxins. We further show that Btk bioinsecticides trigger intestinal cell death and alter protein digestion without modifying the food intake and feeding behavior of the larvae. Interestingly, these harmful effects can be mitigated by a protein-rich diet or by adding the probiotic bacterium Lactobacillus plantarum into the food. Finally, we unravel two new cellular mechanisms allowing the larval midgut to maintain its integrity upon Btk aggression: First the flattening of surviving enterocytes and second, the generation of new immature cells arising from the adult midgut precursor cells. Together, these mechanisms participate to quickly fill in the holes left by the dying enterocytes.


2019 ◽  
Author(s):  
Lucas Khodaei ◽  
Tara Newman ◽  
Samantha Lum ◽  
Henry Ngo ◽  
Matthew Maoloni ◽  
...  

AbstractUnder poor nutritional conditions, 3rd instar Drosophila melanogaster larvae will work collaboratively in feeding clusters to obtain resources that cannot be reached individually. To better understand the conditions that influence the expression of this behaviour we examined the frequencies, the size and the membership in vials of flies that were initially seeded with either 100 or 200 eggs each using flies from both a large, outbred population and a replicate population that was homozygous for the bw allele. Overall, more feeding clusters, containing more larval participants were observed in the higher density vials compared to the lower density vials, consistent with the idea that this social behaviour is a response to dwindling resources in the environment. The presence of the bw allele did not result in greater egg-to-adult mortality, nor did it result in lower participation in feeding clusters.


1970 ◽  
Vol 48 (5) ◽  
pp. 997-1001 ◽  
Author(s):  
I. Ouellet ◽  
G.-W. Corrivault ◽  
J.-M. Perron ◽  
L. Huot

The methyl ether of methyl epireserpate (Su-9064 CIBA) slows down the vitellogenesis process of Drosophila melanogaster without completely stopping it at any given stage. The product inhibits egg laying but does not affect oocyte maturation.


2016 ◽  
Vol 42 (3) ◽  
pp. 259-269 ◽  
Author(s):  
Claire Duménil ◽  
David Woud ◽  
Francesco Pinto ◽  
Jeroen T. Alkema ◽  
Ilse Jansen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document