Path following control for a stratospheric airship with actuator saturation

2016 ◽  
Vol 39 (7) ◽  
pp. 987-999 ◽  
Author(s):  
Zewei Zheng ◽  
Keyu Yan ◽  
Shuaixian Yu ◽  
Bing Zhu ◽  
Ming Zhu

This paper proposes two different path following control schemes for a stratospheric airship with actuator saturation. Each of the control schemes consists of a guidance loop and an attitude control loop. In both schemes, guidance laws are designed according to the line-of-sight guidance-based path following principle. In the first control scheme, a robust H∞ controller without constraints is designed based on the planar model of a stratospheric airship to stabilize path-following errors. The input constraints are then addressed by using a regional [Formula: see text]-based model recovery anti-windup compensator, which prevents the unconstrained controller from misbehaving in the constrained closed loop with anti-windup augmentation and ensures the systematic stability. In the second control scheme, model predictive control is applied to guarantee the path-following of the closed-loop system and explicitly address the magnitude and rate of rudders of the stratospheric airship. Theoretical results are illustrated by numerical simulations where both closed-loop systems are capable of following their desired paths and the constraints on control inputs are satisfied.

2019 ◽  
Vol 38 (9) ◽  
pp. 1124-1148 ◽  
Author(s):  
Goran Huskić ◽  
Sebastian Buck ◽  
Matthieu Herrb ◽  
Simon Lacroix ◽  
Andreas Zell

We present a robust control scheme for skid-steered vehicles that enables high-speed path following on challenging terrains. First, a kinematic model with experimentally identified parameters is constructed to describe the terrain-dependent motion of skid-steered vehicles. Using Lyapunov theory, a nonlinear control law is defined, guaranteeing the convergence of the vehicle to the path. To allow smooth and accurate motion at higher speeds, an additional linear velocity control scheme is proposed, which takes actuator saturation, path following error, and reachable curvatures into account. The combined solution is experimentally evaluated and compared against two state-of-the-art algorithms, by using two different robots on several different terrain types, at different speeds. A Robotnik Summit XL robot is tested on three different terrain types and two different paths at speeds up to [Formula: see text] m/s. A Segway RMP 440 robot is tested on three different terrain types and two different path types at speeds up to [Formula: see text] m/s.


Sign in / Sign up

Export Citation Format

Share Document