Model aided airborne integrated navigation system based on an improved square-root unscented H∞ filter

2018 ◽  
Vol 41 (5) ◽  
pp. 1290-1300
Author(s):  
Jieliang Shen ◽  
Yan Su ◽  
Qing Liang ◽  
Xinhua Zhu

An inertial navigation system (INS) aided with an aircraft dynamic model (ADM) is developed as a novel airborne integrated navigation system, coping with the absence of a global navigation satellite system. To overcome the shortcomings of the conventional linear integration of INS/ADM based on an extended Kalman filter, a nonlinear integration method is proposed. Fast-update ADM makes it possible to utilize a direct filtering method, which employs nonlinear INS mechanics as system equations and a nonlinear ADM as observation equations, substituting the indirect filtering based on linear error equations. The strong nonlinearity generally calls for an unscented Kalman filter to accomplish the fusion process. Dealing with the model uncertainty, the inaccurate statistical characteristics of the noise and the potential nonpositive definiteness of the covariance matrix, an improved square-root unscented H∞ filter (ISRUHF) is derived in the paper, in which the robust factor [Formula: see text] is further expanded into a diagonal matrix [Formula: see text], to improve the accuracy and robustness of the integrated navigation system. Corresponding simulations as well as real flight tests based on a small-scale fixed-wing aircraft are operated and ISRUHF shows superiority compared with the commonly used fusion algorithm.

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaosu Xu ◽  
Peijuan Li ◽  
Jian-juan Liu

The Kalman filter (KF), which recursively generates a relatively optimal estimate of underlying system state based upon a series of observed measurements, has been widely used in integrated navigation system. Due to its dependence on the accuracy of system model and reliability of observation data, the precision of KF will degrade or even diverge, when using inaccurate model or trustless data set. In this paper, a fault-tolerant adaptive Kalman filter (FTAKF) algorithm for the integrated navigation system composed of a strapdown inertial navigation system (SINS), a Doppler velocity log (DVL), and a magnetic compass (MCP) is proposed. The evolutionary artificial neural networks (EANN) are used in self-learning and training of the intelligent data fusion algorithm. The proposed algorithm can significantly outperform the traditional KF in providing estimation continuously with higher accuracy and smoothing the KF outputs when observation data are inaccurate or unavailable for a short period. The experiments of the prototype verify the effectiveness of the proposed method.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5909
Author(s):  
Guangle Gao ◽  
Shesheng Gao ◽  
Genyuan Hong ◽  
Xu Peng ◽  
Tian Yu

In order to achieve a highly autonomous and reliable navigation system for aerial vehicles that involves the spectral redshift navigation system (SRS), the inertial navigation (INS)/spectral redshift navigation (SRS)/celestial navigation (CNS) integrated system is designed and the spectral-redshift-based velocity measurement equation in the INS/SRS/CNS system is derived. Furthermore, a new chi-square test-based robust Kalman filter (CSTRKF) is also proposed in order to improve the robustness of the INS/SRS/CNS navigation system. In the CSTRKF, the chi-square test (CST) not only detects measurements with outliers and in non-Gaussian distributions, but also estimates the statistical characteristics of measurement noise. Finally, the results of our simulations indicate that the INS/SRS/CNS integrated navigation system with the CSTRKF possesses strong robustness and high reliability.


2013 ◽  
Vol 347-350 ◽  
pp. 1544-1548
Author(s):  
Zi Yu Li ◽  
Yan Liu ◽  
Ping Zhu ◽  
Cheng Ying

In multi-sensor integrated navigation systems, when sub-systems are non-linear and with Gaussian noise, the federated Kalman filter commonly used generates large error or even failure when estimating the global fusion state. This paper, taking JIDS/SINS/GPS integrated navigation system as example, proposes a federated particle filter technology to solve problems above. This technology, combining the particle filter with the federated Kalman filter, can be applied to non-linear non-Gaussian integrated system. It is proved effective in information fusion algorithm by simulated application, where the navigation information gets well fused.


2012 ◽  
Vol 65 (3) ◽  
pp. 495-511 ◽  
Author(s):  
Quan Wei ◽  
Fang Jiancheng

The fusion of multi-sensor data can provide more accurate and reliable navigation performance than single-sensor methods. However, the general Federated Kalman Filter (FKF) is not suitable for large changes of complex nonlinear systems parameters and is not optimized for effective information sharing coefficients to estimate navigation preferences. This study concerns research on the FKF method for a nonlinear adaptive model based on an improved Genetic Algorithm (GA) for the Strapdown Inertial Navigation System (SINS) / Celestial Navigation System (CNS) / Global Positioning System (GPS) integrated multi-sensor navigation system. An improved fitness function avoids the premature convergence problem of a general GA and decimal coding improves its performance. The improved GA is used to build the adaptive FKF model and to select the optimized information sharing coefficients of the FKF. An Unscented Kalman Filter (UKF) is used to deal with the nonlinearity of integrated navigation system. Finally, a solution and implementation of the system is proposed and verified experimentally.


Sign in / Sign up

Export Citation Format

Share Document