A two-stage image reconstruction strategy for electrical impedance tomography

Author(s):  
Yanyan Shi ◽  
Xiaolong Kong ◽  
Meng Wang ◽  
Feng Fu ◽  
Yajun Lou

Electrical impedance tomography (EIT) is a potential and promising tomographic technique. Based on a reconstruction strategy, conductivity distribution can be imaged by processing boundary measurements. It should be noticed that the process of image reconstruction involves the solution of a nonlinear ill-posed inverse problem. To tackle this problem, a novel two-stage image reconstruction strategy is proposed in this work. It combines the advantages of total generalized variation regularization method and tight wavelet approach. The solution of the proposed method is acquired by employing alternating minimization algorithm and spilt Bregman algorithm. In the numerical simulation, reconstruction of five models is studied. Aside from the visual observation, we have also validated the proposed method with quantitative comparison. Meanwhile, the impact of noise on the reconstruction is considered. Furthermore, the proposed method is evaluated by phantom experimental data. The simulation and experimental results have demonstrated the superior performance of the proposed method in visualizing conductivity distribution.

2019 ◽  
Vol 41 (14) ◽  
pp. 4035-4049 ◽  
Author(s):  
Xiuyan Li ◽  
Yong Zhou ◽  
Jianming Wang ◽  
Qi Wang ◽  
Yang Lu ◽  
...  

Image reconstruction for Electrical Impedance Tomography (EIT) is a highly nonlinear and ill-posed inverse problem. It requires the design and employment of feasible reconstruction methods capable to guarantee trustworthy image generation. Deep Neural Networks (DNN) have a powerful ability to express complex nonlinear functions. This research paper introduces a novel framework based on DNN aiming to achieve EIT image reconstruction. The proposed DNN model, comprises of the following two layers, namely: The Stacked Autoencoder (SAE) and the Logistic Regression (LR). It is trained using the large lab samples which are obtained by the COMSOL simulation software (a cross platform finite elements analysis solver). The relationship between the voltage measurement and the internal conductivity distribution is determined. The untrained voltage measurement samples are used as input to the trained DNN, and the output is an estimate for image reconstruction of the internal conductivity distribution. The results show that the proposed model can achieve reliable shape and size reconstruction. When white Gaussian noise with a signal-to-noise ratio of 30, 40 and 50 were added to test set, the proposed DNN structure still has good imaging results, which proved the anti-noise capability of the network. Furthermore, the network that was trained using simulation data sets, would be applied for the EIT image reconstruction based on the experimental data that were produced after preprocessing.


2014 ◽  
Vol 13 (4) ◽  
pp. 156-164
Author(s):  
Ye. S. Sherina ◽  
A. V. Starchenko

This research has been aimed to carry out a study of peculiarities that arise in a numerical simulation of the electrical impedance tomography (EIT) problem. Static EIT image reconstruction is sensitive to a measurement noise and approximation error. A special consideration has been given to reducing of the approximation error, which originates from numerical implementation drawbacks. This paper presents in detail two numerical approaches for solving EIT forward problem. The finite volume method (FVM) on unstructured triangular mesh is introduced. In order to compare this approach, the finite element (FEM) based forward solver was implemented, which has gained the most popularity among researchers. The calculated potential distribution with the assumed initial conductivity distribution has been compared to the analytical solution of a test Neumann boundary problem and to the results of problem simulation by means of ANSYS FLUENT commercial software. Two approaches to linearized EIT image reconstruction are discussed. Reconstruction of the conductivity distribution is an ill-posed problem, typically requiring a large amount of computation and resolved by minimization techniques. The objective function to be minimized is constructed of measured voltage and calculated boundary voltage on the electrodes. A classical modified Newton type iterative method and the stochastic differential evolution method are employed. A software package has been developed for the problem under investigation. Numerical tests were conducted on simulated data. The obtained results could be helpful to researches tackling the hardware and software issues for medical applications of EIT.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2507
Author(s):  
Jan Dusek ◽  
Jan Mikulka

This paper discusses the optimization of domain parameters in electrical impedance tomography-based imaging. Precise image reconstruction requires accurate, well-correlated physical and numerical finite element method (FEM) models; thus, we employed the Nelder–Mead algorithm and a complete electrode model to evaluate the individual parameters, including the initial conductivity, electrode misplacement, and shape deformation. The optimization process was designed to calculate the parameters of the numerical model before the image reconstruction. The models were verified via simulation and experimental measurement with single source current patterns. The impact of the optimization on the above parameters was reflected in the applied image reconstruction process, where the conductivity error dropped by 6.16% and 11.58% in adjacent and opposite driving, respectively. In the shape deformation, the inhomogeneity area ratio increased by 11.0% and 48.9%; the imprecise placement of the 6th electrode was successfully optimized with adjacent driving; the conductivity error dropped by 12.69%; and the inhomogeneity localization exhibited a rise of 66.7%. The opposite driving option produces undesired duality resulting from the measurement pattern. The designed optimization process proved to be suitable for correlating the numerical and the physical models, and it also enabled us to eliminate imaging uncertainties and artifacts.


Sensor Review ◽  
2017 ◽  
Vol 37 (3) ◽  
pp. 257-269 ◽  
Author(s):  
Qi Wang ◽  
Pengcheng Zhang ◽  
Jianming Wang ◽  
Qingliang Chen ◽  
Zhijie Lian ◽  
...  

Purpose Electrical impedance tomography (EIT) is a technique for reconstructing the conductivity distribution by injecting currents at the boundary of a subject and measuring the resulting changes in voltage. Image reconstruction for EIT is a nonlinear problem. A generalized inverse operator is usually ill-posed and ill-conditioned. Therefore, the solutions for EIT are not unique and highly sensitive to the measurement noise. Design/methodology/approach This paper develops a novel image reconstruction algorithm for EIT based on patch-based sparse representation. The sparsifying dictionary optimization and image reconstruction are performed alternately. Two patch-based sparsity, namely, square-patch sparsity and column-patch sparsity, are discussed and compared with the global sparsity. Findings Both simulation and experimental results indicate that the patch based sparsity method can improve the quality of image reconstruction and tolerate a relatively high level of noise in the measured voltages. Originality/value EIT image is reconstructed based on patch-based sparse representation. Square-patch sparsity and column-patch sparsity are proposed and compared. Sparse dictionary optimization and image reconstruction are performed alternately. The new method tolerates a relatively high level of noise in measured voltages.


Sign in / Sign up

Export Citation Format

Share Document